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ABSTRACT

OPA is a primitive equation model of both the regional and global ocean circulation. It is
intended to be a flexible tool for studying ocean and its interactions with the others
components of the earth climate system (atmosphere, sea-ice, biogeochemical tracers, ...)
over a wide range of space and time scale. Prognostic variables are the three-dimensional
velocity field and the thermohaline variables. The distribution of variables is a three-
dimensional  Arakawa-C-type grid using prescribed z- or s-levels. Various physical
choices are available to describe ocean physics, including a 1.5 turbulent closure for the
vertical mixing. OPA is interfaced with a sea-ice model, a passive tracer model and, via
the OASIS coupler, with several atmospheric general circulation models. In addition, it
can be run on many different computers, including shared and distributed memory multi-
processor computers.

RÉSUMÉ

OPA est un modèle aux équations primitives de la circulation océanique régionale et
globale. Il se veut un outil flexible pour étudier sur un vaste spectre spatio-temporel
l'océan et ses interactions avec les autres composantes du système climatique terrestre
(atmosphère, glace de mer, traceurs biogéochimiques, ...). Les variables pronostiques
sont le champ tri-dimensionnel de vitesse et les caractéristiques thermohalines de l'eau de
mer. La distribution des variables se fait sur une grille C d'Arakawa tri-dimensionnelle
utilisant des niveaux z ou s. Différents choix sont proposés pour décrire la physique
océanique, incluant notamment une fermeture turbulente d'ordre 1.5 pour le mélange
vertical. OPA est interfacé avec un modèle de glace de mer, un modèle de traceur passif
et, via le coupleur OASIS, à plusieurs modèles de circulation générale atmosphérique. En
outre, il peut être exécuté sur de nombreux calculateurs, y compris des machines multi-
processeurs à mémoire partagée ou distribuée.
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DISCLAIMER

OPA (an acronym for "Océan PArallélisé"), the Ocean General Circulation Model (OGCM)
developed at the Laboratoire d’Océanographie DYnamique et de Climatologie (LODYC), is intended
to be a flexible tool for studying the ocean and its interactions with the others components of the earth
climate system (atmosphere, sea-ice, chemical tracers, ...) over a wide range of space and time
scales. It is first and foremost an ocean modelling research tool used by researchers and students.
The model and the reference manual have been made available as a service to the climate and
oceanographic community. We cannot certify that the code and its manual are free of errors. Bug are
inevitable and some have undoubtedly survived the testing phase. Researchers are encouraged to
bring them to our attention. Anyone may use OPA freely for research purposes. The authors and the
LODYC assume no responsibility for problems, errors, or incorrect usage of OPA. The researchers
clearly accept full responsibility that their particular configuration is working correctly.

The OPA OGCM reference in papers and other publications is as follows:
Madec, G., P. Delecluse, M. Imbard, and C. Lévy, 1998: OPA 8.1 Ocean General Circulation
Model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL),
France, No 11 , 91pp.

Gurvan Madec: gm@lodyc.jussieu.fr
Pascale Delecluse: pna@lodyc.jussieu.fr
Maurice Imbard: mi@lodyc.jussieu.fr
Claire Lévy: elle@lodyc.jussieu.fr
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FOREWORD

This manual presents OPA, the Ocean General Circulation Model (OGCM) which has been

developed at the Laboratoire d’Océanographie DYnamique et de Climatologie (LODYC) to study large

scale ocean circulation and its interaction with the atmosphere and the sea-ice. The general philosophy

consists in solving the primitive equations on powerful computers with various physical choices.

Although these equations are well established, different choices can be made for the physics or the

algorithms. The art of numerical modelling consists in trying to choose the best parameterizations and

the most efficient algorithms on a given computer to study a particular problem.

An OGCM is in perpetual evolution, so its description has to be updated regularly. The present

manual describes the release 8.1 of OPA. The developments for a new computer architecture and the

addition of new physics have motivated this release. The major modifications are (1) the adaptation to

distributed memory computers (such as Cray T3E) using message passing methods, (2) the intro-

duction of a terrain-following vertical coordinate (s-coordinates), (3) the interfacing of the model with

AGCMs through OASIS 2.0 coupler [Terray 1996], a sea-ice model, and a passive tracer model (on-

or off-line) (4) a rotation of the lateral diffusive and viscous tensors along geopotential surfaces or

local isopycnal surfaces (neutral surfaces), (5) the introduction of the Gent and McWilliams [1990]

parameterization of eddy induced velocity, (6) a linear or quadratic bottom friction, (7) a new

formulation of the UNESCO equation of state and of the local Brunt-Vaisälä frequency, and (8) an

additional parameterization of convective processes. In addition, several minor modifications in the

coding have been introduced (rewriting of the initialisations, of some of the internal routines, ...)

with the constant concern of reducing the in core memory requirement. Last but not least, phasing in

the adjoint and tangent linear version of OPA has been ensured.
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INTRODUCTION

Oceans cover 70% of the earth's surface and contain
97% of the earth’s water. They are an essential element of
our life and environment. They play a paramount role in
the climate system through complex air-sea interactions
and through their huge storage capacity of heat and
dissolved gases (CO2 , CFC, ...). Dynamical
oceanography is a young science. The detailed structure of
the currents, the water mass displacements, and the
distribution of physical and chemical properties in the sea
are far from being well understood. The physical
processes driving the currents and determining physical
properties of sea water are numerous, complex and occur
over a large spectra of space and time scales. They result
from the circulation induced by the action of the wind on
the sea surface and from the circulation linked to the
spatial heterogeneities of temperature and salinity
(generated at the sea surface by interactions with the
atmosphere and the sea ice), called the thermohaline
circulation.

Understanding and simulating the ocean has some
similarities with the problem of weather forecasting. This
is probably why, historically, many techniques used in
the meteorological field have been applied to the
oceanographic problem. In particular, for over twenty
years, the use of computers to solve the Navier-Stokes
equations has been successfully applied to the ocean, and
Ocean General Circulation Models (OGCMs) have
become important tools in the study of the dynamics and
the physics of the ocean. Coupled with Atmospheric
General Circulation Models (AGCMs) and/or a sea-ice
model they can also be used to understand the climate
evolution and hopefully to predict it.

Most OGCMs are based on the equations described by
K. Bryan [1969]. They have been used to study different
physical phenomena such as turbulent eddies in oceanic
mid latitudes [Cox and Bryan 1984], the thermohaline
circulation [Bryan 1987], meridional heat fluxes [Bryan
1982] and the general circulation of the tropical oceans
[Philander and Pacanowski 1986]. It is worth noting that
most of the pioneering simulations have been made in the
seventies in the United States where the most powerful
computers available were located at that time. Since then,
countries like Great Britain, Germany, and France have
also developed OGCMs, as soon as powerful systems
became available in Europe.

The basic idea of numerical methods consists in
discretizing differential equations on a three dimensional

grid and computing the time evolution of each variable
for each gridpoint. Ocean models are usually written in
finite difference form. Such a method provides a legible
computer code*, easy to update, and is able to deal with
the complex boundary conditions formed by the coastline
geometry and the bottom topography. Despite the
similarities of the equations governing the ocean and the
atmosphere, there is a large difference between air and sea
water densities so that the characteristic scales in time and
space of these two fluids are rather different. For instance,
oceanic structures are characterised by highs and lows
propagating across a turbulent fluid, but the time scale of
these motions is about one month as compared to two or
three days in the atmosphere. Moreover, the horizontal
resolution needed to resolve the dynamics correctly must
be of the order of the internal radius of deformation,
which is ~1000 km in the atmosphere and ~30 km in the
ocean. This difference is of particular importance in the
study of the circulation on a global scale. The number of
gridpoints in the horizontal plane is considerably larger in
an ocean model. The number of vertical levels is similar
for oceanic general circulation models and for atmospheric
general circulation models. For the earth's domain, this
results in about 160,000 x 30 gridpoints in an OGCM
compare to 4000 x 20 in an AGCM. In order to ensure
the numerical stability, the time step is ~10 minutes for
the atmosphere and 1 hour for the ocean for the same time
differencing scheme. however, the number of operations
and variables per gridpoint is slightly greater for the
atmosphere due to the inclusion of physical processes
such as cloud physics.

The present manual describes the release 8.1 of OPA.
The earliest code was developed and implemented for a
Cray 1 by M. Chartier [1985** ], in collaboration with
P. Delecluse. It was successfully used in 1986 to
simulate the tropical Atlantic. In 1988, the model has
been entirely rewritten to be used in a multitasked way
and running in central memory, and named OPA for
"Océan PArallelisé" [Andrich et al. 1988a, 1988b ,
Andrich 1989]. A series of releases (from 2 to 5) were
the occasion of some improvements on the physics
(inclusion of salinity, realistic heat fluxes, initialisation

* The legibility of a computer code is of paramount importance as a
model is an evolutive research tool, that has to be used by research
scientists as well as students.
** A year in bold indicates that the reference can be found at the end
of the manual in part "OPA-reference".
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with the Levitus data set) [Madec 1990] and on the
numerics (solution of the barotropic equation with a
preconditioned conjugate gradient method, different
treatments of static instabilities, iterative method to
compute the vertical diffusion) [Madec et al. 1988,
1991]. OPA 6.0 was developed in 1990 for global ocean
configuration [Marti 1992]. The major additions were the
inclusion of variable bottom topography and islands, the
generalisation of the curvilinear formalism and cyclic
boundary conditions [Madec and Marti 1990, Marti et al.
1992]. In 1992, the code was subjected to a major
rewriting which lead to OPA 7.0: the model was rewritten
in order to provide one routine for each term in the
momentum and tracer equations, to introduce new coding
rules, and to use UNIX facilities like cpp. In addition,
implicit treatment of vertical diffusion and a 1.5 turbulent
closure were introduced [Blanke 1992, Blanke and
Delecluse 1993]

Various applications have been performed with the
code, from process studies in the Mediterranean Sea
[Madec et al. 1991, 1996, Speich et al. 1996, Mortier
1992 , Herbaut 1994 , Herbaut et al. 1996 , 1997 ,
1998] to basin scale studies in the tropical Atlantic
Ocean [Merle and Morlière 1988 , Morlière 1989 ,
Morlière et al. 1989 , Morlière and Duchène 1990 ,
Reverdin et al. 1991 , Blanke 1992 , Blanke and
Delecluse 1993, Delecluse et al. 1994], the tropical
Pacific ocean [Dandin 1993, Boulanger 1994, Maes et
al. 1997 ], the three tropical oceans [Maes 1996 ,
Boulanger et al. 1997, Maes et al. 1998] and the global
ocean [Marti 1992, Delecluse 1993, Madec and Imbard
1996, Aumont et al. 1998a, 1998b] as well as coupled
studies with biogeochemical model [Lévy et al 1997,
1998, Stoens et al. 1998a, 1998b] and with ocean-
atmosphere and sea-ice models [Mechoso et al. 1994,
Terray et al. 1995, Guilyardi et al. 1995, Terray 1996,
Guilyardi and Madec 1997, Vintzileos and Sadourny
1997, Vintzileos et al. 1998a, 1998b, Barthelet et al.
1998 , Guilyardi et al. 1998 , Delecluse 1998] and
adjoint studies [Greiner 1993, Greiner and Périgaud
1994, Greiner et al. 1998a, 1998b]. In addition, the
adaptation of OPA7 to massively parallel computers has
been achieved [Guyon 1995 , Guyon et al. 1994 ,
1999]. For a more exhaustive bibliography on studies
using the model and/or its outputs, see the OPA-
References in the present manual.

This manual is organised in four parts. The first part
presents the model basics, i.e. the equations and their
assumptions, the two system of vertical coordinate used
(z- and s-coordinates), and the subgrid scale physics. The
second part details the time and space discretizations. The
third part is devoted to the model physics and provides the
physical basis and the numerical implementation of the
different options offered in the model. Finally the fourth
part describes code aspects (architecture, flow trace,
parallelization, environment).

All the namelist parameters and cpp keys used are
referenced in the course of the manual and summerized in
an index. The definition of these variables can be found in
chapter IV. A nearly complet list of papers, Phd
dissertations and repports which use OPA or its outputs
is given in part "OPA-reference". A year in bold in the
manual indicates that the reference can be found at the end
of the manual in part "OPA-reference"

References
(see OPA-Bibliography when the year is in bold)
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I.   MODEL BASICS

I.1  PRIMITIVE EQUATIONS

I.1-a Vector Invariant Formulation

The ocean is a fluid which can be described to a good
approximation by the primitive equations, i.e. the
Navier-Stokes equations along with a non-linear equation
of state which couples the two active tracers (temperature
and salinity) to the fluid velocity, plus the following
additional assumptions made from scale considerations :

(1) spherical earth approximation: the geopotential
surfaces are assumed to be spheres so that gravity (local
vertical) is parallel to the earth's radius ;

(2) thin-shell approximation: the ocean depth is
neglected compared to the earth's radius ;

(3) turbulent closure hypothesis: the turbulent fluxes
(which represent the effect of small scale processes on the
large-scale) are expressed in terms of large-scale features ;

(4) Boussinesq hypothesis: density variations are
neglected except in their contribution to the buoyancy
force ;

(5) Hydrostatic hypothesis: the vertical momentum
equation is reduced to a balance between the vertical
pressure gradient and buoyancy force (this removes
convective processes from the initial Navier-Stokes
equations: they must be parameterized) ;

(6) Incompressibility hypothesis: the three dimen-
sional divergence of the velocity vector is assumed to be
zero.

Because the gravitational force is so dominant in the
equations of large-scale motions, it is quite useful to
choose an orthogonal set of unit vectors (i, j,k)  linked to
the earth such that k is the local upward vector and (i, j)
are two vectors orthogonal to k , i.e. tangent to the
geopotential surfaces. Let us define the following
variables: U  the vector velocity, U = Uh + w k  (the
subscript h denotes the local horizontal vector, i.e. over
the (i, j)  plan), T the potential temperature, S  the
salinity, ρ the in-situ density. The vector invariant form
of the primitive equations in the (i, j,k)  vector system
provides the following six equations (namely the
momentum balance, the hydrostatic equilibrium, the
incompressibility, the heat and salt conservation and an
equation of state):

∂Uh

∂t
= − ∇ × U( ) × U + 1

2
∇ U 2( )



h

− f k × Uh − 1

ρo

∇h p + DU

(I.1.1)

∂p

∂z
= −ρ g (I.1.2)

∇ ⋅ U = 0 (I.1.3)

∂T

∂t
= −∇. T U( ) + DT (I.1.4)

∂S

∂t
= −∇. S U( ) + DS (I.1.5)

ρ = ρ(T, S, p) (I.1.6)

where ∇ is the generalised derivative vector operator in
(i, j,k)  directions, t the time, z the vertical coordinate, ρ
the in situ density given by the equation of state (I.1.6),
ρo  a reference density, p the pressure, f the Coriolis
acceleration ( f = 2 Ω. k , where Ω  is the Earth angular
velocity vector), and g the gravitational acceleration. DU,
D T and D S are the parameterizations of small scale
physics for momentum, temperature and salinity,
including surface forcing terms. Their nature and
formulation are discussed in § I.5.

I.1-b Boundary Conditions

An ocean is bounded by complex coastlines and
bottom topography at its base and by an air-sea or ice-sea
interface at its top. These boundaries can be defined by
two surfaces, z = −H(i, j) and z = η(i, j, t ) , where H is
the depth of the ocean bottom and η the height of the sea
surface. Both H and η  are usually referenced to a given
surface, z = 0 , chosen as a mean sea surface (Fig. I.1).
Through these two boundaries, the ocean can exchange
fluxes of heat, fresh water, salt, and momentum with the
solid earth, the continental surfaces, the sea ice and the
atmosphere. However, some of these fluxes are so weak
that even on climatic time scales of thousands of years
they can be neglected. In the following, we briefly review
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η(i,j)

0

z

i, j

-H(i,j)

Figure I.1: The ocean is bounded by two surfaces, z = − H(i, j )  and
z = η(i, j, t ) , where H is the depth of the sea floor and η the height of
the sea surface. Both H and η  are referenced to z = 0.

the fluxes exchanged at the interfaces between the ocean
and the other components of the earth system.

- Land - ocean interface: the major flux between
continental surfaces and the ocean is a mass exchange of
fresh water through river runoff. Such an exchange
modifies locally the sea surface salinity especially in the
vicinity of major river mouths. It can be neglected for
short range integrations but has to be taken into account
for long term integrations as it influences the charac-
teristics of water masses formed (especially at high
latitudes). It is required to close the water cycle of the
climatic system. It is usually specified as a fresh water
flux at the air-sea interface in the vicinity of river
mouths.

- Solid earth - ocean interface: heat and salt fluxes
across the sea floor are negligibly small, except in special
areas of little extent. They are always neglected in the
model. The boundary condition is thus set to no flux of
heat and salt across solid boundaries. For momentum, the

situation is different. There is no flow across solid
boundaries, i.e. the velocity normal to the ocean bottom
and coastlines is zero (in other words, the bottom velocity
is parallel to solid boundaries). This kinematic boundary
condition can be expressed as:

w = −Uh .∇h H( ) (I.1.7)

In addition, the ocean exchanges momentum with the
earth through friction processes. Such momentum transfer
occurs at small scales in a boundary layer. It must be
parameterized in terms of turbulent fluxes through bottom
and/or lateral boundary conditions. Its specification
depends on the nature of the physical parameterization
used for DU  in (I.1.1). They are discussed in § I.5 and
§ III.6 to 9.

- Atmosphere - ocean interface: the kinematic surface
condition plus the mass flux of fresh water P-E  (the
precipitation minus evaporation budget) leads to:

w = ∂η
∂t

+ Uh z=η .∇h η( ) + P − E (I.1.8)

The dynamic boundary condition, neglecting the surface
tension (which removes capillary waves from the system)
leads to the continuity of pressure across the interface
z = η . The atmosphere and ocean also exchange
horizontal momentum (wind stress), and heat.

- Sea ice - ocean interface: the two media exchange
heat, salt, fresh water and momentum. The sea-surface
temperature is constrained to be at the freezing point at
the interface. Sea ice salinity is very low (~4 psu)
compared to those of the ocean (~34 psu). The cycle of
freezing/melting is associated with fresh water and salt
fluxes that cannot be neglected.

I.2  THE HORIZONTAL PRESSURE GRADIENT

I.2-a Pressure Formulation

The total pressure at a given depth z is composed of a
surface pressure ps  at a reference geopotential surface
( z = 0 ) and a hydrostatic pressure ph  such that:
p(i, j, z, t) = ps (i, j, t ) + ph i, j, z, t( ) . The latter is compu-

ted by integrating (I.1.2), assuming that pressure in
decibars can be approximated by depth in meters in
(I.1.6). The hydrostatic pressure is then given by:

ph i, j, z, t( ) = g ρ T, S, z( ) dς
ς =z

ς =0

∫ (I.2.1)

The surface pressure requires a more specific
treatment. Two strategies can be considered: (1) the
introduction of a new variable η , the free-surface

elevation, for which a prognostic equation can be
established and solved ; (2) the assumption that the ocean
surface is a rigid lid, on which the pressure (or its
horizontal gradient) can be diagnosed. When the former
strategy is used, a solution of the free-surface elevation
consists in the excitation of external gravity waves. The
flow is barotropic and the surface moves up and down
with gravity as the restoring force. The phase speed of
such waves is high (some hundreds of metres per second)
so that the time step would have to be very short if they
were present in the model. The latter strategy filters these
waves as the rigid lid approximation implies η = 0 , i.e.
the sea surface is the surface z = 0 . This well-known
approximation increases the surface wave speed to infinity
and modifies certain other long-wave dynamics (e.g.
barotropic Rossby or planetary waves). In the present
release of OPA, only the second strategy is available.
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I.2-b Diagnosing the Surface Pressure
Gradient

We assume that the ocean surface ( z = 0 ) is a rigid lid
on which a pressure ps  is exerted. This implies that the
vertical velocity at the surface is equal to zero. From the
continuity equation (I.1.3) and the kinematic condition at
the bottom (I.1.7) (no flux across the bottom), it can be
shown that the vertically integrated flow HUh  is
nondivergent (where the overbar indicates a vertical
average over the whole water column, i.e. from z = −H ,
the ocean bottom, to z = 0 , the rigid-lid). Thus, HUh

can be derived from a volume transport streamfunction ψ:

Uh = 1

H
k × ∇ψ( ) (I.2.2)

As ps  does not depend on depth, its horizontal gradient is
obtained by forming the vertical average of (I.1.1) and
using (I.2.2):

1

ρo

∇h ps = M − ∂ Uh

∂t
= M − 1

H
k × ∇ ∂ψ

∂t












 (I.2.3)

Here M = (Mu , Mv )  represents the collected contributions
of the Coriolis, hydrostatic pressure gradient, non-linear
and viscous terms in (I.1.1). The time derivative of ψ  is
the solution of an elliptic equation which is obtained
from the vertical component of the curl of (I.2.3):

∇ × 1

H
k × ∇ ∂ψ

∂t
























z

= ∇ × M[ ]
z

(I.2.4)

Using the proper boundary conditions, (I.2.4) can be
solved to find ∂ψ ∂t  and thus using (I.2.3) the
horizontal surface pressure gradient. It should be noted
that ps  can be computed by taking the divergence of
(I.2.3) and solving the resulting elliptic equation. Thus
the surface pressure is a diagnostic quantity which can be
recovered for analysis purposes.

I .2-c Boundary Conditions

A difficulty lies in the determination of the boundary
condition on ∂ψ ∂t . The boundary condition on velocity
is that there is no flow normal to a solid wall, i.e. the
coastlines are streamlines. Therefore (I.2.4) is solved with
the following Dirichlet boundary condition: ∂ψ ∂t  is
constant along each coastline of the same continent or of
the same island. When all the coastlines are connected
(there are no islands), the constant value of ∂ψ ∂t  along
the coast can be arbitrarily chosen to be zero. When
islands are present in the domain, the value of the
barotropic streamfunction will generally be different for
each island and for the continent, and will vary with
respect to time. So the boundary condition is: ψ = 0
along the continent and ψ = µ n  along island n
( 1 ≤ n ≤ Q ), where Q is the number of islands present in

the domain and µ n  is a time dependent variable. A time-
evolution equation of the unknown µ n  can be found by
evaluating the circulation of the time derivative of the
vertical average (barotropic) velocity field along a closed
contour around each island. Since the circulation of a
gradient field along a closed contour is zero, from (I.2.3)
we have:

  

1

H
k × ∇ ∂ψ

∂t












 ⋅ dl

n∫ = M ⋅ dl
n∫    1 ≤ n ≤ Q (I.2.5)

Since (I.2.4) is linear, its solution ψ can be decomposed
as follows :

ψ = ψ o + µ nψ n

n=1

n=Q

∑ (I.2.6)

where ψ o  is the solution of (I.2.4) with ψ o = 0 along all
the coastlines, and where ψ n  is the solution of (I.2.4)
with the right-hand side equal to 0, and with ψ n = 1
along the island n, ψ n = 0  along the other boundaries.
The function ψ n  is thus independent of time. Introducing
(I.2.6) into (I.2.5) yields:

1

H
k × ∇ψ m[ ] ⋅ dl

n∫

1≤m≤Q

1≤n≤Q

∂µ n

∂t






1≤n≤Q

= M − 1

H
k × ∇ ∂ψ o

∂t






















 ⋅ dl

n∫






1≤n≤Q

(I.2.7)

which can be rewritten as:

A
∂µ n

∂t






1≤n≤Q

= B (I.2.8)

where A  is a Q × Q matrix and B is a time-dependent
vector. As A is independent of time, it can be calculated
and inverted once. The time derivative of the stream-
function when islands are present is thus given by :

∂ψ
∂t

= ∂ψ o

∂t
+ A−1B ψ n

n=1

n=Q

∑ (I.2.9)
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k
z

i

λ

j
ϕ

Figure I.2: the geographical coordinate system (λ , ϕ , z )  and the
curvilinear coordinate system (i, j, k ).

I.3  CURVILINEAR Z-COORDINATE SYSTEM

I.3-a Tensorial Formalism

In many ocean circulation problems, the flow field has
regions of enhanced dynamics (i.e. surface layers, western
boundary currents, equatorial currents, or ocean fronts).
The representation of such dynamical processes can be
improved by specifically increasing the model resolution
in these regions. As well, it may be convenient to use a
lateral boundary-following coordinate system to better
represent coastal dynamics. Moreover, the common
geographical coordinate system has a singular point at the
North Pole which cannot be easily treated in a global
model without filtering. A solution consists in
introducing an appropriate coordinate transformation
which shifts the singular point on land [Madec and Imbard
1996, Murray 1996]. As a conclusion, it is important to
solve the primitive equations in various curvilinear coor-
dinate systems. An efficient way of introducing an
appropriate coordinate transform can be found when using
a tensorial formalism. This formalism is suited to any
multi-dimensional curvilinear coordinate system. Ocean
modellers mainly use three-dimensional orthogonal grids
on the sphere, with conservation of the local vertical.
Here we give the simplified equations for this particular
case. The general case is detailed by Eiseman and Stone
[1980] in their survey of the conservation laws of fluid
dynamics.

Let (i, j, k)  be a set of orthogonal curvilinear
coordinates on the sphere associated with the positively
oriented orthogonal set of unit vectors (i, j,k)  linked to
the earth such that k is the local upward vector and (i, j)
are two vectors orthogonal to k, i.e. along geopotential
surfaces (Fig. I.2). Let (λ ,ϕ , z)  be the geographical
coordinates system in which a position is defined by the
latitude ϕ (i, j), the longitude λ (i, j)  and the distance
from the centre of the earth a + z(k)  where a is the earth's
radius and z the altitude above a reference sea level
(Fig. I.1). The local deformation of the curvilinear
coordinate system is given by e1, e2  and e3 , the three
scale factors:

e1 = a + z( ) ∂λ
∂i

cos ϕ





2

+ ∂ϕ
∂i







2









1/2

e2 = a + z( ) ∂λ
∂j

cos ϕ





2

+ ∂ϕ
∂j







2











1/2

e3 = ∂z

∂k






(I.3.1)

Since the ocean depth is far smaller than the earth's
radius, a + z  can be replaced by a in (I.3.1) (thin-shell
approximation). The resulting horizontal scale factors e1

and e2  are independent of k while the vertical scale factor
is a single function of k as k is parallel to z. The scalar
and vectorial operators which appear in the primitive
equations (Eqs. I.1.1 to I.1.6) can be written in the
tensorial form, invariant in any orthogonal horizontal
curvilinear coordinate system transformation:

∇q = 1

e1

∂q

∂i
i + 1

e2

∂q

∂j
j + 1

e3

∂q

∂k
k (I.3.2)

 ∇. A = 1

e1e2

∂ e2 a1( )
∂i

+
∂ e1 a2( )

∂j









 + 1

e3

∂a3

∂k
(I.3.3)

∇ × A = 1

e2

∂a3

∂j
− 1

e3

∂a2

∂k









 i + 1

e3

∂a1

∂k
− 1

e1

∂a3

∂i









 j

+ 1

e1e2

∂ e2a2( )
∂i

−
∂ e1a1( )

∂j









 k

(I.3.4)

∆q = ∇. ∇q( ) (I.3.5)

∆A = ∇ ∇. A( ) − ∇ × ∇ × A( ) (I.3.6)

where q is a scalar quantity and A = (a1 , a2 , a3 )  a vector
in the (i, j, k)  coordinate system.
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I.3-b Model Equations

In order to express the primitive equations in tensorial
formalism, it is necessary to compute the horizontal
component of the non linear and viscous terms of the
equation using (I.3.2) to (I.3.6). Let us set
U = (u, v, w) = Uh + wk , the velocity in the (i, j, k)
coordinate system and define the relative vorticity ζ and
the divergence of the horizontal velocity field χ, by :

ζ = 1

e1e2

∂ e2 v( )
∂i

−
∂ e1 u( )

∂j









 (I.3.7)

χ = 1

e1e2

∂ e2 u( )
∂i

+
∂ e1 v( )

∂j









 (I.3.8)

Using the fact that horizontal scale factors e1  and e2

are independent of k and that e3  is a function of the single
variable k , the non-linear term of (I.1.1) can be
transformed as follows :

∇ × U( ) × U + 1

2
∇ U 2( )



h

=

1

e3

∂u

∂k
− 1

e1

∂w

∂i









w − ζ v

ζ u − 1

e2

∂w

∂j
− 1

e3

∂v

∂k









w



















+ 1

2

1

e1

∂ u2 + v2 + w2( )
∂i

1

e2

∂ u2 + v2 + w2( )
∂j

















=
−ζ v

ζ u















+ 1

2

1

e1

∂ u2 + v2( )
∂i

1

e2

∂ u2 + v2( )
∂j

















+ 1

e3

w
∂u

∂k

w
∂v

∂k

















−

w

e1

∂w

∂i
− 1

2e1

∂w2

∂i
w

e2

∂w

∂j
− 1

2e2

∂w2

∂j

















The last term of the right hand side is obviously zero, and
thus the non-linear term of (I.1.1) is written in the
(i, j, k)  coordinate system :

∇ × U( ) × U + 1

2
∇ U 2( )



h

= ζ k × Uh + 1

2
∇h Uh

2( ) + 1

e3

w
∂Uh

∂k

(I.3.9)

The equations solved by the ocean model including the
rigid-lid approximation (i.e. Eqs. (I.1.1) to (I.1.6) plus
Eqs. (I.2.3) and (I.1.4) ) can be written in the following
tensorial formalism :

* momentum equation:

∂u

∂t
= + ζ + f( )v − 1

e3

w
∂u

∂k

− 1

e1

∂
∂i

1

2
u2 + v2( ) + ph

ρo







− 1

ρoe1

∂ps

∂i
+ Du

U

(1.3.10)

∂v

∂t
= − ζ + f( )u − 1

e3

w
∂v

∂k

− 1

e2

∂
∂j

1

2
u2 + v2( ) + ph

ρo







− 1

ρoe2

∂ps

∂j
+ Dv

U

(1.3.11)

where ζ is given by (1.3.7) and the surface pressure
gradient is given by:

1

ρo

∇h ps =
M u + 1

H e2

∂
∂j

∂ψ
∂t







M v − 1

H e1

∂
∂i

∂ψ
∂t























(1.3.12)

Here M = (Mu , Mv )  represents the collected contributions
of non-linear, viscous and hydrostatic pressure gradient
terms in (1.3.10) and (1.3.11) and the overbar indicates a
vertical average over the whole water column (i.e. from
z = −H , the ocean bottom, to z = 0 , the rigid-lid). The
time derivative of ψ   is the solution of an elliptic
equation :

∂
∂i

e2

H e1

∂
∂i

∂ψ
∂t















 + ∂

∂j

e1

H e2

∂
∂j

∂ψ
∂t

















= ∂
∂i

e2 M v( ) − ∂
∂j

e1 M u( )
(1.3.13)

The vertical velocity and the hydrostatic pressure are
diagnosed from the following equations:

∂w

∂k
= −χ e3 (I.3.14)

∂ph

∂k
= −ρ g e3 (I.3.15)

where χ is given by (1.3.8).

* tracer equations:

∂T

∂t
= − 1

e1e2

∂ e2Tu( )
∂i

+
∂ e1Tv( )

∂j









− 1

e3

∂ T w( )
∂k

+ DT (I.3.16)

∂S

∂t
= − 1

e1e2

∂ e2Su( )
∂i

+
∂ e1Sv( )

∂j









− 1

e3

∂ Sw( )
∂k

+ DS (I.3.17)

ρ = ρ T , S, z k( )( ) (I.3.18)
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The expression of DU, DS and DT depends on the
subgrid scale parameterization used. It will be defined in
§ I.5.

The whole set of the continuous equations solved by
the model in the z-coordinate systeme is summmerized in
Table I.1.

References
(see OPA-Bibliography when the year is in bold)

Murray, R. J., 1996: Explicit generation of orthogonal grids
for ocean models. J. Comput. Phys., 126, 251-273.

Eiseman, P. R., and A. P. Stone, 1980: Conservation lows of
fluid dynamics - A survey. SIAM Rev., 22, 12-27.

∂u

∂t
= + ζ + f( )v − 1

e3

w
∂u

∂k
− 1

2e1

∂
∂i

u2 + v2( ) ζ = 1

e1e2

∂
∂i

e2 v[ ] − ∂
∂j

e1 u[ ]





− 1

ρoe1

∂ph

∂i
− 1

ρoe1

∂ps

∂i
+ Du

lU + 1

e3

∂
∂k

Avm

e3

∂u

∂k







χ = 1

e1e2

∂
∂i

e2 u[ ] + ∂
∂j

e1 v[ ]





with

∂v

∂t
= − ζ + f( )u − 1

e3

w
∂v

∂k
− 1

2e2

∂
∂j

u2 + v2( ) Mu = 1

H

∂u

∂t
+ 1

ρoe1

∂ps

∂i









 e3 dk

−H

0

∫
− 1

ρoe2

∂ph

∂j
− 1

ρoe2

∂ps

∂j
+ Dv

lU + 1

e3

∂
∂k

Avm

e3

∂v

∂k







Mv = 1

H

∂v

∂t
+ 1

ρoe2

∂ps

∂j









 e3 dk

−H

0

∫
∂ph

∂k
= −ρ g e3

∂w

∂k
= −e3 χ

1

ρoe1

∂ps

∂i
= Mu + 1

H e2

∂
∂j

∂ψ
∂t







1

ρoe2

∂ps

∂j
= Mv − 1

H e1

∂
∂i

∂ψ
∂t







with
∂
∂i

e2

H e1

∂
∂i

∂ψ
∂t















 + ∂

∂j

e1

H e2

∂
∂j

∂ψ
∂t















 = ∂

∂i
e2 Mv( ) − ∂

∂j
e1 Mu( )

∂T

∂t
= − 1

e1e2

∂
∂i

e2 T u( ) + ∂
∂j

e1 T v( )







 − 1

e3

∂
∂k

T w( )

+DlT + 1

e3

∂
∂k

AvT

e3

∂T

∂k







and

∂S

∂t
= − 1

e1e2

∂
∂i

e2 S u( ) + ∂
∂j

e1 S v( )







 − 1

e3

∂
∂k

S w( )

+DlS + 1

e3

∂
∂k

AvT

e3

∂S

∂k







where the expression of Du
lU , Dv

lU( )  and DlT , DlS( ) is given in Table I.3 and I.4, respectively

Table I.1:  Set of equations solved by the model in the curvilinear z-coordinate system.
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I.4  CURVILINEAR S-COORDINATE SYSTEM

I.4-a Introduction

Several important aspects of the ocean circulation are
influenced by bottom topography. Of course, the most
important is that bottom topography determines deep
ocean sub-basins, barriers, sills and channels that strongly
constrain the path of water masses, but more subtle
effects exist. For example, the topographic β-effect is
usually larger than the planetary one along continental
slopes. Topographic Rossby waves can be excited and can
interact with the mean current. In the z-coordinate system
presented in the previous section (§ I.3), z-surfaces are
geopotential surfaces. The bottom topography is
discretized by steps. This often leads to a
misrepresentation of a gradually sloping bottom and to
large localized depth gradients associated with large
localized vertical velocities. The response to such a
velocity field often leads to numerical dispersion effects.

A terrain-following coordinate system (hereafter s-
coordinates) avoids the discretization error in the depth
field since the layers of computation are gradually adjusted
with depth to the ocean bottom. Relatively shallow
topographic features in the deep ocean, which would be
ignored in typical z-model applications with the largest
grid spacing at greatest depths, can easily be represented
(with relatively low vertical resolution) as can gentle,
large-scale slopes of the sea floor. A terrain-following
model (hereafter s-model) also facilitates the modelling of
the boundary layer flows over a large depth range, which
in the framework of the z-model would require high
vertical resolution over the whole depth range. Moreover,
with s-coordinates it is possible, at least in principle, to
have the bottom and the sea surface as the only
boundaries of the domain. Nevertheless, s-coordinates also
have its drawbacks. Perfectly adapted to an homogeneous
ocean, it has strong limitations as soon as stratification is
introduced. The main two problems come from the
truncation error in the horizontal pressure gradient and a
possibly increased diapycnal diffusion. The horizontal
pressure force in s-coordinates consists of two terms (see
Appendix A),

∇p
z

= ∇p
s

− ∂p

∂s
∇z

s
(I.4.1)

The second term in (I.4.1) depends on the tilt of the
coordinate surface and introduces a truncation error which
is not present in a z-model. In the special case of σ-
coordinates (i.e. a depth-normalised coordinate system
σ = z / H ) Haney [1991] and Beckmann and Haidvogel

[1993] have given estimates of the magnitude of this
truncation error. It depends on topographic slope,
stratification, horizontal and vertical resolution, and the
finite difference scheme. This error limits the possible
topographic slopes that a model can handle at a given
horizontal and vertical resolution. This is a severe
restriction for large-scale applications using realistic
bottom topography. The large scale slopes require high
horizontal resolution, and the computational cost
becomes prohibitive. This problem can be, at least
partially, overcome by mixing s-coordinates and step-like
representation of bottom topography [Madec et al.
1996]. However, another problem is then raised in the
definition of the model domain.

A minimum of diffusion along the coordinate surfaces
of any finite difference model is always required for
numerical reasons. It causes spurious diapycnal mixing
when coordinate surfaces do not coincide with isopycnal
surfaces. This is the case for a z-model as well as for an s-
model. However, density varies more strongly on s-
surfaces than on horizontal surfaces in regions of large
topographic slopes, implying larger diapycnal diffusion in
a s-model than in a z-model. Whereas such a diapycnal
diffusion in a z-model tends to weaken horizontal density
(pressure) gradients and thus the horizontal circulation, it
usually reinforces these gradients in a s-model, creating
spurious circulation. For example, imagine an isolated
bump of topography in an ocean at rest with a
horizontally uniform stratification. Spurious diffusion
along s-surfaces will induce a bump of isopycnal surfaces
over the topography, and thus will generate there a
baroclinic eddy. In contrast, the ocean will stay at rest in
a z-model. As for the truncation error, the problem can be
reduced by introducing the terrain-following coordinate
below the strongly stratified portion of the water column
(i.e. the main thermocline) [Madec et al. 1996]. An
alternate solution consists in rotating the lateral diffusive
tensor to geopotential or to isopycnal surfaces (see § I.5
and Appendix B).

The s-coordinates introduced here [Lott and Madec
1989 , Lott et al. 1990 , Madec et al. 1996 ] differ
mainly in two aspects from similar models. It combines
the properties which make OPA suitable for climate
applications with a good representation of bottom topo-
graphy allowing mixed step-like/terrain following
topography. It also offers a completely general trans-
formation, s = s(i, j, z) , for the vertical coordinate which
goes beyond those of previous hybrid models except the
GFDL version developed by Gerdes [1993a, 1993b] which
has similar properties as the OPA release presented here.
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∂u

∂t
= + ζ + f( )v − 1

e3

ω ∂u

∂k
− 1

2e1

∂
∂i

u2 + v2( ) ζ = 1

e1e2

∂
∂i

e2 v[ ] − ∂
∂j

e1 u[ ]





− 1

ρoe1

∂ph

∂i
+ g

ρ
ρo

σ 1 − 1

ρoe1

∂ps

∂i
+ Du

lU + 1

e3

∂
∂k

Avm

e3

∂u

∂k







χ = 1

e1e2e3

∂
∂i

e2e3 u[ ] + ∂
∂j

e1e3 v[ ]





with

∂v

∂t
= − ζ + f( )u − 1

e3

ω ∂v

∂k
− 1

2e2

∂
∂j

u2 + v2( ) Mu = 1

H

∂u

∂t
+ 1

ρoe1

∂ps

∂i









 e3 dk

−H

0

∫
− 1

ρoe2

∂ph

∂j
+ g

ρ
ρo

σ 2 − 1

ρoe2

∂ps

∂j
+ Dv

lU + 1

e3

∂
∂k

Avm

e3

∂v

∂k







Mv = 1

H

∂v

∂t
+ 1

ρoe2

∂ps

∂j









 e3 dk

−H

0

∫
∂ph

∂k
= −ρ g e3 σ 1 = 1

e1

∂z

∂i s

  ,   and   σ 2 = 1

e2

∂z

∂j
s

∂ω
∂k

= −e3 χ

1

ρoe1

∂ps

∂i
= Mu + 1

H e2

∂
∂j

∂ψ
∂t







1

ρoe2

∂ps

∂j
= Mv − 1

H e1

∂
∂i

∂ψ
∂t







with
∂
∂i

e2

H e1

∂
∂i

∂ψ
∂t















 + ∂

∂j

e1

H e2

∂
∂j

∂ψ
∂t















 = ∂

∂i
e2 Mv( ) − ∂

∂j
e1 Mu( )

∂T

∂t
= − 1

e1e2e3

∂
∂i

e2e3 T u( ) + ∂
∂j

e1e3 T v( )









− 1

e3

∂
∂k

T ω( ) + DlT + 1

e3

∂
∂k

AvT

e3

∂T

∂k







and

∂S

∂t
= − 1

e1e2e3

∂
∂i

e2e3 S u( ) + ∂
∂j

e1e3 S v( )









− 1

e3

∂
∂k

S ω( ) + DlS + 1

e3

∂
∂k

AvT

e3

∂S

∂k







where the expression of Du
lU , Dv

lU( )  and DlT , DlS( ) is given in Table I.3 and I.4, respectively.

Table I.2:  Set of equations solved by the model in the curvilinear s-coordinate system.

I.4-b The s-Coordinate Formulation

Starting from the set of equations established in I.3
for the special case k = z  and thus e3 = 1, we introduce
an arbitrary vertical coordinate s = s(i, j, z) , which
includes z- and σ-coordinates as special cases ( s = z  and
s = σ = z / H , resp.). A formal derivation of the
transformed equations is given in Appendix A. Let us
define the vertical scale factor by e3 = ∂z ∂s  ( e3  is now a
function of (i, j, k)  ), and the slopes in the (i, j)
directions between s- and z-surfaces by :

σ 1 = 1

e1

∂z

∂i s

  ,   and   σ 2 = 1

e2

∂z

∂j
s

(I.4.2)

We also introduce a "vertical" velocity ω defined as the
velocity normal to s-surfaces:

ω = w − σ 1 u − σ 2 v (I.4.3)

The equations solved by the ocean model in the rigid-lid
approximation (i.e. Eqs. (I.1.1) to (I.1.6) plus Eqs. (I.2.3)
and (I.1.4) ) in s-coordinates can be written as follows:

* momentum equation:

∂u

∂t
= + ζ + f( )v − 1

e3

ω ∂u

∂k

− 1

e1

∂
∂i

1

2
u2 + v2( ) + ph

ρo







+ g
ρ
ρo

σ 1 − 1

ρoe1

∂ps

∂i
+ Du

U

(1.4.4)
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∂v

∂t
= − ζ + f( )u − 1

e3

ω ∂v

∂k

− 1

e2

∂
∂j

1

2
u2 + v2( ) + ph

ρo







+ g
ρ
ρo

σ 2 − 1

ρoe2

∂ps

∂j
+ Dv

U

(1.4.5)

where the relative vorticity, ζ, the surface pressure
gradient, and the hydrostatic pressure have the same
expressions as in z-coordinates although they do not
represent exactly the same quantities. ω  is provided by
the same equation as w, i.e. (I.3.14), with χ , the
divergence of the horizontal velocity field given by :

χ = 1

e1e2e3

∂ e2e3 u( )
∂i

+
∂ e1e3 v( )

∂j











(I.4.6)

* tracer equations:

∂T

∂t
= − 1

e1e2e3

∂ e2e3T u( )
∂i

+
∂ e1e3T v( )

∂j











− 1

e3

∂ T ω( )
∂k

+ DT

(I.4.7)

∂S

∂t
= − 1

e1e2e3

∂ e2e3S u( )
∂i

+
∂ e1e3S v( )

∂j











− 1

e3

∂ S ω( )
∂k

+ DS

(I.4.8)

The equation of state have the same expression as in
z-coordinates. The expression of DU, DS and DT depends
on the subgrid scale parameterization used. It will be
defined in § I.5. The whole set of the continuous
equations solved by the model in the s-coordinate systeme
is summmerized in Table I.2.
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I.5  SUBGRID SCALE PHYSICS

The primitive equations describe the behaviour of a
geophysical fluid at space and time scales larger than a
few kilometers in the horizontal, a few meters in the
vertical and a few minutes. They are usually solved at
larger scales, the specified grid spacing and time step of
the numerical model. The effects of smaller scale motions
(coming from the advective terms in the Navier-Stokes
equations) must be represented entirely in terms of large
scale patterns to close the equations. These effects appear
in the equations as the divergence of turbulent fluxes (i.e.
fluxes associated with the mean correlation of small scale
perturbations). Assuming a turbulent closure hypothesis
is equivalent to chose a formulation for these fluxes. It is
usually called the subgrid scale physics. It must be
emphasized that this is the weakest part of the primitive
equations, but also one of the most important for long
term simulations as small scale processes in fine balance
the surface input of kinetic energy and heat.

The control exerted by gravity on the flow induces a
strong anisotropy between the lateral and vertical
motions. Therefore subgrid-scale physics DU , DT  and

DS  in (I.1.1), (I.1.4) and (I.1.5) are divided into a lateral
part DlU , DlT , DlS  and a vertical part DvU , DvT , DvS .
The formulation of these terms and their underlying
physics are briefly discussed in the next two sub-sections.

I.5-a Vertical Subgrid Scale Physics

The model resolution is always larger than the scale at
which the major sources of vertical turbulence occurs
 (shear  instability, internal wave breaking, ...). Turbulent
motions are thus never explicitly solved, even partially,
but always parameterized. The vertical turbulent fluxes are
assumed to depend linearly on the gradients of large-scale
quantities (for example, the turbulent heat flux is given
by ′T ′w = − AvT ∂

z
T , where AvT  is an eddy coefficient).

This formulation is analogous to that of molecular
diffusion and dissipation. This is quite clearly a necessary
compromise: considering only the molecular viscosity
acting on large scale severely underestimates the role of
turbulent diffusion and dissipation, while an accurate
consideration of the details of turbulent motions is
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simply impractical. The resulting vertical momentum and
tracer diffusive operators are of second order :

DvU = ∂
∂z

Avm ∂Uh

∂z






,   DvT = ∂
∂z

AvT ∂T

∂z






,

DvS = ∂
∂z

AvS ∂S

∂z






(I.5.1)

where Avm  and AvT  are the vertical eddy viscosity and
diffusivity coefficients, respectively. At the sea surface
and at the bottom, turbulent fluxes of momentum, heat
and salt must be specified (see § III.4 and III.9). All the
vertical physics is embedded in the specification of the
eddy coefficients. They can be assumed to be either
constant, or function of the local fluid properties (as
Richardson number, Brunt-Vaisälä frequency, ...), or
computed from a turbulent closure model. The choices
available in OPA are discussed in § III.7.

I.5-b Lateral Diffusive and Viscous
Operators

Lateral turbulence can be roughly divided into a
mesoscale turbulence associated to eddies which can be
solved explicitly if the resolution is sufficient as their
underlying physics are included in the primitive
equations, and a sub mesoscale turbulence which is never
explicitly solved even partially, but always parameterized.
The formulation of lateral eddy fluxes depends on whether
the mesoscale is below or above the gridspacing (i.e. the
model is eddy-resolving or not).

In non-eddy resolving configurations, the closure is
similar to that used for the vertical physics. The lateral
turbulent fluxes are assumed to depend linearly on the
lateral gradients of large-scale quantities. The resulting
lateral diffusive and dissipative operators are of second
order. Observations show that lateral mixing induced by
mesoscale turbulence tends to be along isopycnal surfaces
(or more precisely neutral surfaces, i.e. isopycnal surfaces
referenced at the local depth) rather than across them. As
the slope of isopycnal surfaces is small in the ocean, a
common approximation is to assume that the ‘lateral’
direction is the horizontal, i.e. the lateral mixing is
performed along geopotential surfaces. This leads to a
geopotential second order operator for lateral subgrid scale
physics. This assumption can be relaxed: the eddy-induced
turbulent fluxes can be better approached by assuming
that they depend linearly on the gradients of large-scale
quantities computed along isopycnal surfaces. In such a
case, the diffusive operator is an isopycnal second order
operator and it has components in the three space
directions. However, both horizontal and isopycnal
operators have no effect on mean (i.e. large scale)
potential energy whereas potential energy is a main
source of turbulence (through baroclinic instabilities).
Gent and McWilliams [1990] have proposed a parameteri-

zation of mesoscale eddy-induced turbulence which
associates an eddy-induced velocity to the isopycnal
diffusion. Its mean effect is to reduce the mean potential
energy of the ocean. This leads to a formulation of lateral
subgrid scale physics made up of an isopycnal second
order operator and an eddy induced advective part. In all
these lateral diffusive formulations, the specification of
the lateral eddy coefficients remains the problematic point
as there is no satisfactory formulation of these
coefficients as a function of large scale features.

In eddy-resolving configurations, a second order
operator can be used, but usually a more scale selective
one (biharmonic operator) is preferred as the gridspacing
is usually not small enough compared to the scale of the
eddies. The role devoted to the subgrid scale physics is to
dissipate the energy that cascades toward the grid scale and
thus ensures the stability of the model while not
interfering with the solved mesoscale activity.

All these parameterizations of subgrid scale physics
present advantages and disadvantages. There are not all
available in OPA. In the z-coordinate formulation, four
options are offered for active tracers (temperature and
salinity): second order geopotential operator, second order
isopycnal operator, Gent and McWilliams [1990]
parameterization and fourth order geopotential operator.
The same options are available for momentum, except
Gent and McWilliams [1990] parameterization which
only involves tracers. In s-coordinate formulation, an
additional option is offered for tracers: second order
operator acting along s-surfaces, and for momentum:
fourth order operator acting along s-surfaces (see §III.6).

* lateral second order tracer diffusive operator :

The lateral second order tracer diffusive operator is
defined by (see Appendix B):

DlT =∇. AlT ℜ∇T( ) with ℜ=
1 0 −r1

0 1 −r2

−r1 −r2 r1
2 +r2

2









 (I.5.2)

where r1 and r2  are the slopes between the surface along
which the diffusive operator acts and the surface of
computation (z- or s-surfaces), and ∇  is the differential
operator defined in § I.3 or § I.4 depending on the
vertical coordinate used (see Table I.3). Note that the
formulation of ℜ  is exact for the slopes between
geopotential and s-surfaces, while it is only an
approximation for the slopes between isopycnal and z- or
s-surfaces. Indeed, in the latter case, two assumptions are
made to simplify ℜ  [Cox, 1987]: the ratio between
lateral and vertical diffusive coefficients is known to be
several orders of magnitude smaller than unity, and the
slopes are, generally less than 10-2 in the ocean (see
Appendix B). This leads to the linear tensor (I.5.2) where
the two isopycnal directions of diffusion are independent
and where the diapycnal diffusivity contribution is solely
along the vertical.
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second order lateral diffusive operator on tracers:

* z-coordinates:

DlT = 1

e1e2

∂
∂i

AlT e2

e1

∂T

∂i
− r1

e2

e3

∂T

∂k















 + ∂

∂j
AlT e1

e2

∂T

∂j
− r2

e1

e3

∂T

∂k





























+ 1

e3

∂
∂k

AlT − r1

e1

∂T

∂i
− r2

e2

∂T

∂j
+

r1
2 + r2

2( )
e3

∂T

∂k



















where r1 = r2 = 0   for geopotential diffusion and r1 = e3

e1

∂ρ
∂i







∂ρ
∂k







−1

,  r2 = e3

e2

∂ρ
∂j







∂ρ
∂k







−1

 for isopycnal diffusion

*s-coordinates:

DlT = 1

e1e2e3

∂
∂i

AlT e2e3

e1

∂T

∂i s

−e2r1

∂T

∂s

















s

+ ∂
∂j

AlT e1e3

e2

∂T

∂j
s

−e1r2

∂T

∂s



















s








+ ∂
∂s

AlT −e2r1

∂T

∂i s

− e1r2

∂T

∂j
s

+ e1e2

e3

r1
2 + r2

2( ) ∂T

∂s

























where r1 = 1

e1

∂z

∂i s

,   r2 = 1

e2

∂z

∂j
s

  for geopotential diffusion

and r1 = 1

e1

∂z

∂i s

+ e3

e1

∂ρ
∂i s







∂ρ
∂s







−1

, r2 = 1

e2

∂z

∂j
s

+ e3

e2

∂ρ
∂j

s







∂ρ
∂s







−1

 for isopycnal diffusion

fourth order tracer diffusive operator: (diffusion along geopotential or s-surfaces only)

DlT = ∆ AlT ∆ T( )
where ∆  is the second order lateral diffusive operator defined above in z- or s-coordinates

Table I.3: tracer diffusive operators used to represent lateral subgrid scale processes in the curvilinear z- and s-coordinate system.

For geopotential diffusion, r1 and r2  are the slopes
between the geopotential and computational surfaces: in
z-coordinates they are zero ( r1 = r2 = 0) while in s -
coordinate they are equal to σ 1  and σ 2 , respectively (see
(I.4.2) ).

For isopycnal diffusion, r1 and r2   are the slopes
between the isopycnal and geopotential surfaces.
In z-coordinates they are given by:

r1 = e3

e1

∂ρ
∂i







∂ρ
∂k







−1

,   r2 = e3

e2

∂ρ
∂j







∂ρ
∂k







−1

(I.5.3)

while in s-coordinate they are given by

r1 =σ 1 + e3

e1

∂ρ
∂i s







∂ρ
∂s







−1

(I.5.4)

r2 =σ 2 + e3

e2

∂ρ
∂j

s







∂ρ
∂s







−1

For Gent and McWilliams [1990] diffusion, an addi-
tional tracer advection is used in combination with the
isopycnal diffusion of tracers:

DlT = ∇. AlT ℜ ∇T( ) + ∇. U∗ T( ) (I.5.5)

where U∗ = u∗ , v∗ , w∗( ) is a non-divergent, eddy-induced
transport velocity. This velocity field is defined from r1
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second order diffusive operator on momentum:

* geopotential diffusion (z-coordinates) or diffusion along s-surfaces (s-coordinates):

DlU = ∇h Almχ( ) − ∇h × Alm ζ k( ) =

1

e1

∂
∂i

Almχ[ ] − 1

e2e3

∂
∂j

Alm e3ζ[ ]
1

e2

∂
∂j

Almχ[ ] + 1

e1e3

∂
∂i

Alm e3ζ[ ]

















*geopotential diffusion (s-coordinates) or isopycnal diffusion (z- and s-coordinates):

DlU = ∇. Alm ℜ ∇Uh( ) = 1

e1e2e3

∂
∂i

Alm e2e3

e1

∂Uh

∂i s

− e2r1

∂Uh

∂s

















s

+ ∂
∂j

Alm e1e3

e2

∂Uh

∂j
s

− e1r2

∂Uh

∂s



















s








+ ∂
∂s

Alm −e2r1

∂T

∂i s

− e1r2

∂T

∂j
s

+ e1e2

e3

r1
2 + r2

2( ) ∂T

∂s

























where r1 = 1

e1

∂z

∂i s

, r2 = 1

e2

∂z

∂j
s

 for geopotential diffusion in s-coordinates,

r1 = e3

e1

∂ρ
∂i s







∂ρ
∂s







−1

, r2 = e3

e2

∂ρ
∂j

s







∂ρ
∂s







−1

 for isopycnal diffusion in z-coordinates

r1 = 1

e1

∂z

∂i s

+ e3

e1

∂ρ
∂i s







∂ρ
∂s







−1

, r2 = 1

e2

∂z

∂j
s

+ e3

e2

∂ρ
∂j

s







∂ρ
∂s







−1

 for isopycnal diffusion in s-coordinates.

fourth order diffusive operator on momentum:

DlU = ∆ AlU ∆ Uh( )   where ∆ is defined by ∆
a

b






=

1

e1

∂
∂i

1

e1e2

∂ e2 a( )
∂i

+
∂ e1 b( )

∂j

















− 1

e2e3

∂
∂j

e3

e1e2

∂ e2 b( )
∂i

−
∂ e1 a( )

∂j


















1

e2

∂
∂j

1

e1e2

∂ e2 a( )
∂i

+
∂ e1 b( )

∂j

















+ 1

e1e3

∂
∂i

e3

e1e2

∂ e2 b( )
∂i

−
∂ e1 a( )

∂j




































the 2nd order diffusive operator along s-surfaces in s-coordinates or along geopotential surfaces in z-coordinates,

and by ∆
a

b






=
∇. ℜ ∇a( )
∇. ℜ ∇b( )







  with ∇. ℜ ∇ •( ) , the second order geopotential diffusive operator, in s-coordinates

Table I.4: momentum diffusive operators used to represent lateral subgrid scale processes in the curvilinear z- and s-coordinate system.

and r2 , the isopycnal slopes evaluated as in (I.5.3) or
(I.5.4) depending on the vertical coordinate used, and Aeiv

an eddy induced velocity coefficient (or equivalently the
isopycnal thickness diffusivity coefficient). It takes the
following expression:

u∗ = 1

e3

∂
∂k

Aeiv r1[ ]

v∗ = 1

e3

∂
∂k

Aeiv r2[ ]

w∗ = − 1

e1e2

∂
∂i

Aeiv e2r1( ) + ∂
∂j

Aeiv e1r2( )









(I.5.6)

The normal component of the eddy induced velocity is
zero at all the boundaries by tapering either the eddy
coefficient or the slopes to zero in the vicinity of the
boundaries.

* lateral fourth order tracer diffusive operator:

The lateral fourth order tracer diffusive operator is
defined by:

DlT = ∆ AlT ∆T( )   where ∆ •( ) = ∇. ℜ ∇ •( ) (I.5.7)

It is the second order operator given by (I.5.2) applied
twice with the eddy diffusion coefficient correctly placed.
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* lateral second order momentum diffusive operator

The second order momentum diffusive operator along
z- or s-surfaces is found by applying (I.3.4) to the
horizontal velocity vector (see Appendix B):

DlU = ∇h Almχ( ) − ∇h × Alm ζ k( )

 =

1

e1

∂ Almχ( )
∂i

− 1

e2e3

∂ Alm e3ζ( )
∂j

1

e2

∂ Almχ( )
∂j

+ 1

e1e3

∂ Alm e3ζ( )
∂i



















(I.5.8)

Such a formulation ensure a complete separation between
the vorticity and horizontal divergence fields (§ II.4-c).
Unfortunately, it is not available for geopotential
diffusion in s-coordinates and for isopycnal diffusion. In
these two cases, the u- and v-fields are considered as
independent scalar fields, so that the diffusive operator is
given by:

Du
lU = ∇. ℜ ∇u( )

Dv
lU = ∇. ℜ ∇v( )

(I.5.9)

where ℜ  is given by (I.5.2). It is the same expression as
those used for diffusive operator on tracers.

* lateral fourth order momentum diffusive operator

As for tracers, the fourth order momentum diffusive
operator along z- or s-surfaces is a re-entering second order
operator (I.5.8) or (I.5.9) with the eddy viscosity
coefficient correctly placed:

geopotential diffusion in z-coordinates:

DlU = ∇h ∇h . Alm ∇h χ( )[ ]{ }
+ ∇h × k ⋅ ∇ × Alm ∇h × ζ k( )[ ]{ } (I.5.10)

geopotential diffusion in s-coordinates:

Du
lU = ∆. Alm ∆u( )

Dv
lU = ∆. Alm ∆v( )   where ∆ •( ) = ∇. ℜ ∇ •( ) (I.5.11)

The whole set of the continuous equations solved by
the model in the z-coordinate systeme is summmerized in
Table I.3.
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Figure II.1 : Arrangement of variables. T indicates scalar points where
temperature, salinity, density, pressure and horizontal divergence are
defined. (u,v,w) indicates vector points, and f indicates vorticity points
where both relative and planetary vorticities are defined.

T i j k

u i + 1 2 j k

v i j + 1 2 k

w i j k + 1 2

f i + 1 2 j + 1 2 k
uw i + 1 2 j k + 1 2

vw i j + 1 2 k + 1 2

fw i + 1 2 j + 1 2 k + 1 2

Table II.1 : Location of grid-points as a function of integer or integer
and a half value of the column, line or level. Note that  in the FORTRAN
code, the vertical indexation  is re-oriented downward (see §III.1).

II.  DISCRETIZATION

II.1 INTRODUCTION

II.1-a Arrangement of Variables

The numerical techniques used to solve the Primitive
Equations are based on the traditional, centered second-
order finite difference approximation. Special attention
has been given to the homogeneity of the solution in the
three space directions. The arrangement of variables is the
same in all directions (Fig. II.1). It consists in cells
centered on scalar points (T , S, p, ρ, χ) with vector
points (u, v, w) defined in the centre of each face of the
cells. This is the generalization to three dimension of the
well-known “C” grid in Arakawa’s classification. The
relative and planetary vorticity, ζ and f, are defined in the
center of each vertical edge and the barotropic stream
function ψ is defined at horizontal points overlying the ζ
and f-points.

The ocean mesh (i.e. the position of all the scalar and
vector points) is defined by the transformation that gives
(λ ,ϕ , z)  as a function of (i, j, k) . The grid-points are
located at integer or integer and a half values of (i, j, k)  as
indicated on table II.1. In all the following, subscripts u,

v, w, f, uw, vw or fw indicate the position of the grid-
point where the scale factors are defined. Each scale factor
is defined as the local analytical value provided by (I.3.1).
As a result, the mesh on which partial derivatives
∂ ∂i , ∂ ∂j , and ∂ ∂k  are evaluated is uniform mesh
with a grid size unity. Discrete partial derivative are
formulated by the traditional, centered second-order finite
difference approximation while the scale factors are
chosen equal to their local analytical value. An important
point here is that the partial derivative of the scale factors
must be evaluated by centered second-order finite
difference approximation, not from their analytical
expression. This preserves the symmetry of the discrete
set of equations and therefore allows to satisfy many of
the continuous properties (see Annexe C).

II.1-b Discrete Operators

Given the values of a variable q at adjacent points, the
derivation and averaging operators at the midpoint
between them are:

δ
i

q[ ] = q i + 1 2( ) − q i − 1 2( ) (II.1.1)

q
i

= q i + 1 2( ) + q i − 1 2( ){ } 2 (II.1.2)

Similar operator are defined with respect to i + 1 2, j,
j + 1 2, k, and k + 1 2 . Following (I.3.2) and (I.3.5), the

gradient of a variable q defined at T-point has its three
components defined at (u,v,w) while its laplacian is
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defined at T-point. These operators have the following
discrete forms in the curvilinear s-coordinate system :

∇q ≡ 1

e1u

δ i+1 2 q[ ] i + 1

e2v

δ j+1 2 q[ ] j+ 1

e3w

δ k+1 2 q[ ] k (II.1.3)

∆q ≡ 1

e1T e2T e3T

δ i

e2ue3u

e1u

δ i+1 2 q[ ]







 + δ j

e1ve3v

e2v

δ j+1 2 q[ ]















+ 1

e3T

δ k

1

e3w

δ k+1 2 q[ ]









(II.1.4)

Following (I.3.3) and (I.3.4), a vector A = (a
1
, a

2
, a

3
)

defined at vector points (u,v,w) has its three curl
components defined at (vw,uw,f) and its divergence
defined at T-points:

∇ × A ≡ 1

e2v e3vw

δ j+1 2 e3wa3[ ] − δ k+1 2 e2va2[ ]( ) i

+ 1

e2u e3uw

δ k+1 2 e1ua1[ ] − δ i+1 2 e3wa3[ ]( ) j

+ 1

e1 f e2 f

δ i+1 2 e2va2[ ] − δ j+1 2 e1ua1[ ]( ) k

(II.1.5)

∇ ⋅ A ≡ 1

e1T e2T e3T

δ i e2u e3u a1[ ] + δ j e1v e3v a2[ ]( )
+ 1

e3T

δ k a3[ ]
(II.1.6)

(II.1.3) and (II.1.5) have exactly the same expression in
the curvilinear z-coordinates system, while (II.1.4) and
(II.1.6) can be simplified in such a case: the vertical scale
factor is a function of the single variable k and does not
depend on the horizontal location of a grid point so that it
can be simplified from outside and inside the δ

i
 and δ

j

operators. The vertical average over the whole water
column denoted by an overbar becomes for a quantity q
which is a masked field (i.e. equal to zero inside solid
area):

q = 1

H
q e3q dk

kb

ko

∫ ≡ 1

Hq

q e3q

k

∑
(II.1.7)

where H
q
 is the masked sum of the vertical scale factors

at q points, k b and k o  are the bottom and surface k-index,
and the symbol ∑ referring to a summation over all grid
points of the same species in the direction indicated by
the subscript (here k). In continuous, the following pro-
perties are satisfied :

  ∇ × ∇q =
r
0  (II.1.8)

∇ ⋅ ∇ × A( ) = 0 (II.1.9)

It is straightforward to demonstrate that these properties
are verified locally in discrete form as soon as the scalar q
is taken at T-points and the vector A has its components
defined at vector points (u,v,w).

Let a and b be two fields defined on the ocean mesh,
extended to zero inside continental area. By an integration
by part it is obvious to demonstrate that the derivation
operators (δ

i
, δ

j
, and δ

k
)  are anti-symmetric linear

operators, and further that the averaging operators
(

i
,

j
, and

k
)  are symmetric linear operators, i.e.,

ai δ i b[ ]
i

∑ ≡ − δ i+1 2 a[ ] bi+1 2

i

∑ (II.1.10)

ai b
i

i

∑ ≡ a
i+1 2

bi+1 2

i

∑ (II.1.11)

In other words, the adjoint of averaging and derivation
operators are •

i *

= •
i+1 2

 and δ
i

* = −δ
i+1 2

, respectively.
This two properties will be used extensively in § II.4 and
in Appendix C to demonstrate integral conservative
properties of the discrete formulation chosen.

II.1-c Mask System

OPA works with interior land and topography areas,
although the computations occur over the entire model
domain. The process of defining which areas are to be
masked is described in § III.2-b, while this section
describes how the masking affects the computation of the
various terms of the equations, especially the boundary
condition at solid walls.

The discrete representation of a domain with complex
boundaries (coastlines and bottom topography) leads to
arrays that include large portions where a computation is
not required as the model variables remain at zero.
Nevertheless, vectorial supercomputers are far more
efficient when computing over a whole array, and the
readability of a code is greatly improved when boundary
conditions are applied in an automatic way rather than by
a specific computation before or after each do loop. An
efficient way to work over the whole domain while
specifying the boundary conditions is to use the multi-
plication by mask arrays in the computation. A mask
array is a matrix which elements are 1 in the ocean
domain and 0 elsewhere. A simple multiplication of a
variable by its own mask ensures that it will remain zero
over land areas. Since most of the boundary conditions
consist of a zero flux across the solid boundaries, they can
be simply settled by multiplying variables by the right
mask arrays, i.e. the mask array of the grid point where
the flux is evaluated. For example, the heat flux in the i-
direction is evaluated at u-points. Evaluating this quantity
as,

AlT

e
1

∂T
∂i

≡
A

u

lT

e
1u

δ
i+1 2

T[ ] mask
u

(II.1.12)

where masku is the mask array at u-point, ensures that the
heat flux is zero inside land and at the boundaries as
masku is zero at solid boundaries defined at u-points in
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Figure II.2  Lateral boundary (thick line) at T-level. The velocity
normal to the boundary is set to zero.

V V

T-point
f-point

LAND LANDOCEAN OCEAN

(a) (b)

Figure II.3  (a) free-slip and (b) no-slip lateral boundary conditions.

this case (normal velocity u remains zero at the coast)
(Fig.II.2).

On momentum the situation is a bit more complex as
two boundary conditions must be provided along the coast
(one on the normal velocity and the other on the
tangential velocity). The boundary of the ocean in C-grid
is defined by the velocity-faces. For example, at a given
T-level , the lateral boundary (coastline or intersection
with the bottom topography) is made of segments joining
f-points, and normal velocity points are located between
two f-points (Fig.II.2). The boundary condition on the
normal velocity (no flux through solid boundaries) can
thus be easily settled by the mask system. The boundary
condition on the tangential velocity requires a more
specific treatment. It influences the relative vorticity and
momentum diffusive trends, and is only required to
compute the vorticity at the coast:

- free-slip boundary condition: the normal derivative of
the tangential velocity is zero at the coast, so the
vorticity: maskf array is set to zero inside the land and at
the coast.

- no-slip boundary condition: the tangential velocity
vanishes at the coastline. Assuming that the tangential
velocity decreases linearly from the closest ocean velocity
grid point to the coastline, the normal derivative is
evaluated as if the closest land velocity gridpoint were of
the same magnitude as the closest ocean velocity

gridpoint but in the opposite direction (Fig.II.3-b).
Therefore, the vorticity along the coastlines is given by:
ζ ≡ 2 ( δ

i+1 2
e

2v
v[ ] − δ

j+1 2
e

1u
u[ ]) (e

1 f
e

2 f
), where u and v

are masked fields. Setting the maskf array to 2 along the
coastline allows to provide a vorticity field computed
with the no-slip boundary condition simply by
multiplying it by the maskf :

ζ ≡ 1

e1 f e2 f

δ i+1 2 e2v v[ ] − δ j+1 2 e1u u[ ]( ) mask f (II.1.13)

A partial- or a strong-slip boundary condition can be
set along the coastline. This is equivalent to making
another assumption on the velocity profile in the
coastline vicinity. This can be settled by providing a
value of maskf strictly inbetween 0 and 2 (partial-slip), or
larger than 2 (strong-slip).

The nature of the lateral boundary condition is
controled by the value of shlat (namelist parameter)
which is equal to the value of the maskf array along the
coastline, i.e. shlat=0 for free-slip, shlat=2 for no-slip,
0<shlat<2 for partial-slip, and shlat>2 for strong-slip.
Note that when the bottom topography is entirely
represented by the s-coordinates, the lateral boundary
condition on momentum tangential velocity is of little
importance as it is only applied next to the coast where
the minimum water depth can be quite shallow.

II.2  SEMI-DISCRETE SPACE EQUATIONS

II.2-a Ocean Dynamics

Using the representation described in § II.1, several
semi-discrete space forms of the dynamical equations are
available depending on the vertical coordinate used and on
the conservative properties of the vorticity term. In this
section, we first provide the semi-discrete space form of
the dynamical equations in z- and s-coodinates with a

vorticity term formulation that conserves total potential
enstrophy. The two other available forms of the vorticity
term are then given for both types of vertical coordinates.
In all the equations, the masking has been omitted for
simplicity. One must be aware that all the quantities are
masked fields and that each time a mean or difference
operator is used, the resulting field is multiplied by a
mask.
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* z-coordinate dynamical equations:
The semi-discrete space form of the momentum

equations on the staggered mesh can be written in z-
coordinate as follows:

∂u
∂t

= + 1
e

1u

j

ζ + f( )
i+1 2, j

e
1v

v( ) − 1
2e

1u

δ
i+1 2

u2
i

+ v2
j[ ]

    
− 1

e
1u

e
2u

e
3u

k

e
1T

e
2T

w
i+1 2δ

k+1 2
u[ ]

(II.2.1)

    
− 1

ρo e1u

δ i+1 2 ph[ ] − Mu + 1

Hu e2u

δ j

∂ψ
∂t













+ Du
lU + Du

vU

∂v
∂t

= − 1
e

2v

i

ζ + f( )
i, j+1 2

e
2u

u( ) − 1
2e

2v

δ
j+1 2

u2
i

+ v2
j[ ]

    
− 1

e
1v

e
2v

e
3v

k

e
1T

e
2T

w
j+1 2δ

k+1 2
v[ ]

(II.2.2)

    

− 1
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δ
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v

− 1
H

v
e

1v

δ
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+ D
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δ
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e
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δ
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∂ψ
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 + δ

j+1 2

e
1u

H
u
e
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δ
j

∂ψ
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= δ
i+1 2

e
2v

M
v[ ] − δ

j+1 2
e

1u
M

u[ ]
(II.2.3)

where (M
u
, M

v
)  represent the collected contributions of

the nonlinear, viscous and hydrostatic pressure gradient
terms in (II.2.1) and (II.2.2) vertically averaged over the
whole water column, i.e. using the discrete vertical mean
operator given by (II.1.7). (D

u

lU , D
v

lU ) and (D
u

vU , D
v

vU ) are
the discrete formulations of the lateral and vertical
momentum physics, respectively. They are given in
§ III.6 and § III.7. The hydrostatic pressure can be
computed from (I.3.15). Nevertheless, the pressure is
quite large at great depth while its horizontal gradient is
several orders of magnitude smaller. This may lead to
large truncation errors in the pressure gradient terms.
Thus, the two horizontal components of the hydrostatic
pressure gradient are computed directly as follows :

for k=km (surface layer)

δ
i+1 2

ph[ ]
k=km

= 1
2

g δ
i+1 2

e
3w

ρ[ ]
k=km

δ
j+1 2

ph[ ]
k=km

= 1
2

g δ
j+1 2

e
3w

ρ[ ]
k=km









(II.2.4)
for 1 < k < km  (interior layer)

δ
i+1 2

ph[ ]
k

= δ
i+1 2

ph[ ]
k−1

+ 1
2

g δ
i+1 2

e
3w

ρ k+1 2[ ]
k

δ
j+1 2

ph[ ]
k

= δ
j+1 2

ph[ ]
k−1

+ 1
2

g δ
j+1 2

e
3w

ρ k+1 2[ ]
k









The vertical velocity is computed as follows:

w
km+1 2

= 0

w
k−1 2

= w
k+1 2

− e
3T

χ
k





 (II.2.5)

Using (II.2.5), the bottom boundary condition
( w

bottom
= 0 ) is automatically achieved at least at the

computer accuracy, due to the discrete expression of the
surface pressure gradient (Appendix C).

The vorticity and the horizontal divergence are given
by:

ζ = 1
e

1 f
e

2 f

δ
i+1 2

e
2v

v[ ] − δ
j+1 2

e
1u

u[ ]( ) (II.2.6)

χ = 1
e

1T
e

2T

δ
i

e
2u

u[ ] + δ
j

e
1v

v[ ]( ) (II.2.7)

* s-coordinate dynamical equations:
Formally, the s-coordinate semi-discrete space form of

the dynamic equations only differs from the z- one in the
two components of the momentum equation and in the
horizontal divergence formulation. These modified three
equations are written as follows:

∂u

∂t
= + 1

e1u

j

ζ + f

e3 f







i+1 2, j

e1v e3v v( ) − 1

2e1u

δ i+1 2 u2
i

+ v2
j[ ]

    − 1

e1u e2u e3u

k

e1T e2T w
i+1 2δ k+1 2 u[ ] (II.2.8)
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(II.2.9)

    

− 1

ρo e2v

δ j+1 2 ph[ ] + g ρ j+1 2

ρo e2v

δ j+1 2 zT[ ]

− Mv − 1

Hv e1v

δ i

∂ψ
∂t













+ Dv

lU + Dv

vU

χ = 1

e1Te2Te3T

δ i e2ue3uu( ) + δ j e1ve3vv( )[ ] (II.2.10)

Note that whereas the vertical velocity and the
vorticity have the same discrete expression, their physical
meanings have changed. w is the velocity normal to the
s-surfaces while ζ  is a pseudo vorticity along s-surfaces
(only pseudo as (u, v)  are still defined along geopotential
surfaces, but not necessary defined at the same depth).
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* vorticity term in z- and s-coordinates:
(default option or key_vorenergy or

key_vorcombined defined)
The discretization of the vorticity term both in z- and

s-coordinates is given in (II.2.1), (II.2.2) and (II.2.8),
(II.2.9) conserves the potential enstrophy of horizontally
non divergent flow [Sadourny 1975]. Other discretizations
are available which conserve horizontal kinetic energy or
potential enstrophy for the relative vorticity term and
horizontal kinetic energy for the planetary vorticity term
(see §II.4 and appendix C). All the available schemes are
given just below.

The standard discrete formulation of the vorticity term
provides a global conservation of the enstrophy
(  (ζ + f )2  in z-coordinates, (ζ + f ) e

3 f[ ]2

 in s-coord-
inates) for a horizontally non-divergent flow (i.e. χ=0),
but does not conserve of the total kinetic energy. It is
given by:

z − coordinate:
− 1

e1u

i

ζ + f( )
i, j+1 2

e1v v( )
1

e2v

j

ζ + f( )
i+1 2, j

e2u u( )

















s − coordinate

− 1

e1u

i

ζ + f

e3 f







i, j+1 2

e1v e3v v( )

1

e2v

j

ζ + f

e3 f







i+1 2, j

e2u e3u u( )





















(II.2.11)

A kinetic energy conserving scheme can be optionally
used (key_vorenergy defined). It conserves the global
kinetic energy but not the global enstrophy [Sadourny
1975]. It is given by:

z − coordinate:
− 1

e1u

j

ζ + f( ) e1vv( )i+1 2

1

e2v

i

ζ + f( ) e2uu( ) j+1 2
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e2ue3uu( ) j+1 2





















(II.2.12)

A third scheme can be optionally used (key_vor-
combined defined). It consists of the enstrophy conser-
ving scheme (II.2.11) applied to the relative vorticity
term and of the horizontal kinetic energy conserving
scheme (II.2.12) applied to the planetary vorticity term.

II.2-b Ocean Thermodynamics

* z-coordinate tracer equations:
The semi-discrete space form of the tracer equations on

the staggered mesh can be written in z-coordinate as
follows:

∂T

∂t
= − 1

e1T e2T

δ i e2u T
i+1 2

u[ ] + δ j e1v T
j+1 2

v[ ]( )
− 1

3Te
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∂t
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e1T e2T

δ i e2u S
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u[ ] + δ j e1v S
j+1 2

v[ ]( )
− 1

3Te
δ k S

k+1 2
w[ ] + DT

lS + DT
vS

(II.2.13)

* s-coordinate tracer equations:
Formally, the s-coordinate semi-discrete space form of

the tracer equations only differs from the z- one due to the
change in the discrete form of the divergence. They can be
written as follows:

∂T

∂t
= − 1

e1T e2T e3T

δ i e2u e3u T
i+1 2

u[ ] + δ j e1v e3v T
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(II.2.14)
∂S

∂t
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e1T e2T e3T

δ i e2u e3u S
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u[ ] + δ j e1v e3v S
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v[ ]( )
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3Te
δ k S

k+1 2
w[ ] + DT

lS + DT
vS

( D
T

lT , D
T

lS ) and ( D
T

vT , D
T

vS ) are the discrete formulations of
the lateral and vertical tracer physics, respectively. They
are given in § III.6 and § III.7.

II.2-c Ocean Physics

* lateral subgrid scale physics on tracers:
The general form of the second order lateral tracer

subgrid scale physics (I.5.2) takes the following semi-
discrete space form in z- and s-coordinates:

DT
lT = 1

e1T e2T e3T

δ i Au
lT e2u e3u

e1u

δ i+1/ 2 T[ ]−e2u r1u δ k+1/ 2 T[ ]
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−e1w r2w δ j+1/ 2 T[ ]
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+ e1w e2w

e3w

r1w
2 +r2w

2( )δ k+1/ 2 T[ ]











(II.2.15)

where r
1
 and r

2
 are the slopes between the surface of

computation (z- or s-surfaces) and the surface along which
the diffusive operator acts. The way these slopes are
evaluated is given in § III.6. In the case of Gent and
McWilliams [1990] parameterization, an additional tracer
advection is used. Its formulation depends on r

1
 and r

2
 .

It is also given in § III.6. At the surface, bottom and
lateral boundaries, the turbulent fluxes of heat and salt are
set to zero. In the special case of diffusion acting along
model levels, (II.2.17) reduces to:
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lT = 1

e1T e2T

δ i Au
eiv e2u

e1u

δ i+1/2 T[ ]





















+δ j Av
eiv e1v

e2v

δ j+1/2 T[ ]





















(II.2.16)

The lateral fourth order operator formulation on tracers
is simply obtained by applying (II.2.15) or (II.2.16)
twice. It requires an additional assumption on boundary
conditions: first and third derivative terms normal to the
coast, the bottom and the surface are set to zero.

* lateral subgrid scale physics on momentum:
For geopotential diffusion in z-coordinates: the second

order lateral momentum subgrid scale physics takes the
following semi-discrete space form :

Du
lU = 1

e1u

δ i+1 2 AT
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e2u

δ j Af
lm ζ[ ]

Dv
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e2v
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e1v

δ i Af
lm ζ[ ]

(II.2.17)

For lateral diffusion along s-surfaces in s-coordinates,
the operator becomes :

Du
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e1u

δ i+1 2 AT
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e2u e3u
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lm e3 f ζ[ ]

(II.2.18)

When a rotation of lateral momentum diffusive opera-
tor is used (i.e. for geopotential or isopycnal diffusion in
s-coordinates or for isopycnal diffusion in z-coordinates),
the diffusive operator is similar to (II.2.15) applied to
each horizontal component of the velocity, that is:
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where r
1
 and r

2
 are the slopes between the surface along

which the diffusive operator acts and the surface of
computation (z- or s-surfaces). The way these slopes are
evaluated is given in § III.6.

The lateral fourth order operator formulation on
momentum is obtained by applying (II.2.17) or (II.2.18)
or (II.2.19) twice. It requires an additional assumption on
boundary conditions: first derivative term normal to the
coast is depending on the free or no-slip lateral boundary
conditions chosen, while the third derivative terms normal
to the coast are set to zero (see § III.6).

* vertical subgrid scale physics:
The formulation of the vertical subgrid scale physics

is the same in z- and s-coordinate as the horizontal scale
factors do not depend on the vertical coordinates used (see
§ I.3-a). The vertical diffusive operators given by (I.5.1)
take the following semi-discrete space form:

Du
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(II.2.20)
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where Auw
vm , Avw

vm  and Aw
vT  are the vertical eddy viscosity

and diffusivity coefficients. The way these coefficients can
be evaluated is given in § III.7.

At surface and bottom boundaries, the turbulent fluxes
of momentum, heat and salt must be specified. At the
surface they are prescribed from the surface forcing (see
§ III.4), while at the bottom they are set to zero for heat
and salt, and specified through a bottom friction paramete-
rization (see § III.9).

Note that when the ocean is coupled to a sea-ice
model, the surface boundary condition on temperature
switches from a Neuman to a Dirichlet boundary
condition: the surface heat flux is no more specified, but
diagnosed from the setting of the freezing temperature at
the first ocean level.
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II.3  TIME OPERATORS

II.3-a Non-Diffusive Part—Leapfrog Scheme

The time differencing scheme used in OPA for non-
diffusive processes is the well known leapfrog (three-level
centered) scheme :

ut+∆t = ut−∆t + 2∆t RHSt (II.3.1)

where RHS is the non-diffusive right hand side of a given
equation, ∆t  is the time step and the overscripts indicate
the time at which a quantity is evaluated. The first time
step of this three level scheme when starting from an
ocean at rest (not from a restart file which provides the
two previous time steps, see §III.12) is a forward step
u1 = uo + ∆t RHSo .

This scheme is widely used for advective processes in
low-viscosity fluids. It is an efficient method that
achieves second-order accuracy with just one right hand
side evaluation per time step. Moreover, it does not
artificially damp linear oscillatory motion nor does it
produce instability by amplifying the oscillations. These
advantages are somewhat diminished by the large phase-
speed error of the leapfrog scheme, and the unsuitability
of leapfrog differencing for the representation of diffusive
and Rayleigh damping processes. However, the most
serious problem associated with the leapfrog scheme is a
high-frequency computational noise called "time-
splitting" [Haltiner and Williams 1980] that develops
when the method is used to model non linear fluid
dynamics: the even and odd time steps tend to diverge
between a physical and a computational mode. Time
splitting can be controlled through the use of an Asselin
time filter (first designed by Robert [1966] and more
comprehensively studied by Asselin [1972]) or by
periodically reinitialising the leapfrog solution through a
single integration step with a two-level scheme. In OPA
we follow the first strategy:

u
f

t = ut + γ u
f

t−∆t − 2ut + ut+∆t[ ] (II.3.2)

where the subscript f denotes filtered values and γ  is the
asselin coefficient. γ  is initialized as atfp (namelist
parameter). Its default value is ratf=0.1. Both strategies
do, nevertheless, degrade the accuracy of the calculation
from second to first order. The leapfrog scheme associated
to a Robert-Asselin time filter has been prefered to other
time differencing schemes such as predictor corrector or
trapezoidal schemes because the user can control the
magnitude and the spatial structure of the time diffusion
of the scheme. This is exactly the same strategy as for the
space discretization of the advective terms of momentum
and tracer equations. The choice made is to avoid implicit

numerical diffusion in both the time and space
discretisation of the advective term, and add an explicit
diffusive operator.

II.3-b Diffusive Part—Forward or Backward
Scheme

The leapfrog differencing is unsuitable for the
representation of diffusive and damping processes. For D,
a horizontal diffusive terms and/or the restoring terms to a
tracer climatology (when they are present, see § III.11), a
forward time differencing scheme is used :

ut+∆t = ut−∆t + 2∆t Dt−∆t (II.3.3)

This is diffusive in time and conditionally stable. For
example, the condition of stability for a second order hori-
zontal diffusion is:

Ah ≤ e2 (π 2 2∆t) (II.3.4)

where e is the smallest grid size and Ah  the diffusive
coefficient.

For the vertical diffusion terms, a forward time
differencing scheme can be used, but usually the
numerical stability condition implies a strong constraint
on the time step. Two solutions are available in OPA to
overcome the stability constraint: (1) a forward time
differencing scheme using a time splitting technique
(key_zdfexplicit defined) or (2) a backward (or
implicit) time differencing scheme by default. In (1), the
master time step ∆t is cut into N fractional time steps so
that the stability criterion is reduced by a factor of N. The
computation is done as follows :

for L=1 to N

u
*

t−∆t+L 2∆t
N = u

*

t−∆t+ L−1( ) 2∆t
N + 2∆t

N
D

t−∆t+ L−1( ) 2∆t
N  (II.3.5)

with u
*

t−∆t = ut−∆t , u
*

t+∆t = ut+∆t  and D a vertical diffusion
term. The number of fractional time steps, N, is given by
setting navmt, (namelist parameter). The scheme (2) is
unconditionally stable but diffusive. It can be written as
follows:

ut+∆t = ut−∆t + 2∆t Dt+∆t (II.3.6)

This scheme is rather time consuming since it requires
a matrix inversion, but it becomes attractive since a
splitting factor of 3 or more is needed for the forward time
differencing scheme. For example, the finite difference
approximation of the temperature equation is :

T(k)t+1 −T(k)t−1

2∆t
≡ RHS+ 1

e
3T

δ
k

A
w

vT

e
3w

δ
k+1 2

T t+1[ ]







 (II.3.7)
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where RHS  is the right hand side of the equation
except the vertical diffusion term. Defining
c(k) = A

w

vT (k) e
3w

(k) ,  d
k

= e
3T

(k) 2∆t + c
k

+ c
k+1

 and
b(k) = e

3T
(k) (T t−1 (k) 2∆t + RHS)  we rewrite (II.3.7) as:

−c(k + 1) T t+1 (k + 1) + d(k) T t+1 (k)
− c(k) T t+1 (k − 1) ≡ b(k)

(II.3.8)

(II.3.8) is a linear system of equations. All the
elements of the corresponding matrix vanish except those
on the diagonals. Moreover, c(k)  and d(k) are positive
and the diagonal term is greater than the sum of the two
extra-diagonal terms, therefore a special adaptation of the
Gauss elimination procedure is used to find the solution
(see for example Richtmyer and Morton [1967]).
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II.4  INVARIANT OF THE EQUATIONS

The continuous equations of motion have many
analytic properties. Many quantities (total mass, energy,
enstrophy, etc.) are strictly conserved in the inviscid and
unforced limit, while ocean physics conserve the total
quantities on which they act (momentum, temperature,
salinity) but dissipate their total variance (energy,
enstrophy, etc.). Unfortunately, finite difference form of
these equations are not guaranteed to retain all these
important properties. In constructing the finite
differencing schemes, we wish to ensure that certain
integral constraints will be maintained. In particular, it is
desirable to construct the finite difference equations so
that horizontal kinetic energy and/or potential enstrophy
of horizontally non divergent flow, and variance of
temperature and salinity will be conserved in the absence
of dissipative effects and forcing. The advantage of this
approach was first pointed out by Arakawa [1966].
Arakawa showed that if integral constraints on energy are
maintained, the computation will be free of the
troublesome "non linear" instability originally pointed
out by Phillips [1959]. A consistent formulation of the
energetic properties is also extremely important in
carrying out long-term numerical simulations for an
oceanographic model. Such a formulation avoids
systematic errors which accumulates with time [Bryan,
1969].

The general philosophy of OPA which has led to the
discrete formulation presented in §II.2 and II.3 is to
choose second order non-diffusive scheme for advective
terms for both dynamical and tracer equations. At this
level of complexity, the resulting schemes are dispersive
schemes. Therefore, they require the addition of a diffusive
operator to be stable. The alternative is to use diffusive
schemes such as upstream or flux corrected schemes. This
last option was rejected because we prefer a complete
handling of the model diffusion, i.e. of the model physics
rather than letting the advective scheme produces its own

implicit diffusion without controlling the space and time
structure of this implicit diffusion. Note that in some
very specific cases as passive tracer studies, the positivity
of the advective scheme is required. In that case, and in
that case only, the advective scheme used for passive
tracer is a flux correction scheme [Marti 1992, Lévy
1996, Lévy et al 1998].

II.4-a Conservation Properties on Ocean
Dynamics

The non linear term of the momentum equations has
been split into a vorticity term, a gradient of horizontal
kinetic energy and a vertical advection term. Three
schemes are available for the former (see § II.2) according
to the cpp variable defined (default option or key_vor-
energy or key_vorcombined defined). They differ in
their conservative properties (energy or enstrophy
conserving scheme). The two latter terms preserve the
total kinetic energy: the large scale kinetic energy is also
preserved in practice. The remaining non-diffusive terms
of the momentum equation (namely the hydrostatic and
surface pressure gradient terms) also preserve the total
kinetic energy and have no effect on the vorticity of the
flow.

* relative, planetary and total vorticity term:
Let us define ς  as either the relative, planetary and

total potential vorticity, i.e. ζ e
3
,  f e

3
, and

(ζ + f ) e
3
, respectively. The continuous formulation of

the vorticity term satisfies following integral constraints:

k ⋅ 1
e

3

∇ × ς k × U
h( ) dv

D∫ = 0 (II.4.1a)
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if χ = 0

ς k ⋅ 1

e3

∇ × ςk × Uh( ) dv
D

∫ = − 1

2
ς 2 χ dv

D

∫ = 0 (II.4.1b)

U
h

× ς k × U
h( ) dv

D∫ = 0 (II.4.1c)

where dv = e
1
e

2
e

3
di dj dk  is the volume element.

(II.4.1a) means that ς  is conserved. (II.4.1b) is obtained
by an integration by part. It means that ς 2  is conserved
for a horizontally non-divergent flow. (II.4.1c) is even
satisfied locally since the vorticity term is orthogonal to
the horizontal velocity. It means that the vorticity term
has no contribution to the evolution of the total kinetic
energy. (II.4.1a) is obviously always satisfied, but
(II.4.1b) and (II.4.1c) cannot be satisfied simultaneously
with a second order scheme [Sadourny 1975]. Using the
symmetry or anti-symmetry properties of the operators
(Eqs II.1.10 and 11), it can be shown that the scheme
(II.2.11) satisfies (II.4.1b) but not (II.4.1c), while scheme
(II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix
C). Note that the enstrophy conserving scheme on total
vorticity has been chosen as the standard discrete form of
the vorticity term.

* Gradient of kinetic energy / vertical
advection

In continuous formulation, the gradient of horizontal
kinetic energy has no contribution to the evolution of the
vorticity as the curl of a gradient is zero. This property is
satisfied locally with the discrete form of both the
gradient and the curl operator we have made (property
(II.1.9) ). Another continuous property is that the change
of horizontal kinetic energy due to vertical advection is
exactly balanced by the change of horizontal kinetic ener-
gy due to the horizontal gradient of horizontal kinetic
energy:

Uh ⋅∇h 1 2Uh
2( ) dv

D∫ = − Uh ⋅ w

e3

∂Uh

∂k
dv

D∫ (II.4.2)

Using the discrete form given in §II.2-a and the
symmetry or anti-symmetry properties of the mean and
difference operators, (II.4.2) is demonstrated in the
Appendix C. The main point here is that satisfying
(II.4.2) links the choice of the discrete forms of the
vertical advection and of the horizontal gradient of
horizontal kinetic energy. Choosing one imposes the
other. The discrete form of the vertical advection given in
§II.2-a is a direct consequence of formulating the
horizontal kinetic energy as 1 2(u2

i

+ v2
j

)  in the gradient
term.

* hydrostatic pressure gradient term
In continuous formulation, a pressure gradient has no

contribution to the evolution of the vorticity as the curl
of a gradient is zero. This properties is satisfied locally
with the choice of discretization we have made (property
(II.1.9) ). In addition, when the equation of state is linear

(i.e. when an advective-diffusive equation for density can
be derived from those of temperature and salinity) the
change of horizontal kinetic energy due to the work of
pressure forces is balanced by the change of potential
energy due to buoyancy forces:

− 1
ρ

o

∇ph

z
⋅ U

h
dv

D∫  = ∇. ρ U( ) g z dv
D∫ (II.4.3)

Using the discrete form given in § II.2-a and the
symmetry or anti-symmetry properties of the mean and
difference operators, (II.4.3) is demonstrated in the
Appendix C. The main point here is that satisfying
(II.4.3) strongly constraints the discrete expression of the
depth of T-points and of the term added to the pressure
gradient in s-coordinates: the depth of a T-point, z

T
, is

defined as the sum the vertical scale factors at w-points
starting from the surface.

* surface pressure gradient term
In continuous formulation, the surface pressure

gradient has no contribution to the evolution of vorticity.
This properties is trivially satisfied locally as (II.2.3) (the
equation verified by ψ ) has been derived from the discrete
formulation of the momentum equations, vertical sum
and curl. Nevertheless, the ψ -equation is solved
numerically by an iterative solver (see § III.5), thus the
property is only satisfied with the accuracy required on the
solver. In addition, with the rigid-lid approximation, the
change of horizontal kinetic energy due to the work of
surface pressure forces is exactly zero:

− 1
ρ

o

∇
h

D∫ p
s( ) ⋅ U

h
dv = 0 (II.4.4)

(II.4.4) is satisfied in discrete form only if the discrete
barotropic streamfunction time evolution equation is
given by (II.2.3) (see appendix C). This shows that
(II.2.3) is the only way to compute the streamfunction,
otherwise there is no guarantee that the surface pressure
force work vanishes.

II.4-b Conservation Properties on Ocean
Thermodynamics

In continuous formulation, the advective terms of the
tracer equations conserve the tracer content and the
quadratic form of the tracer, i.e.

∇. T U( ) dv
D∫ = 0    and  T ∇. T U( ) dv

D∫ = 0 (II.4.5)

The numerical scheme used (§II.2-b) (equations in flux
form, second order centred finite differences) satisfies
(II.4.5) (see appendix C). Note that in both continuous
and discrete formulations, there is generally no strict
conservation of mass, since the equation of state is non
linear with respect to T and S. In practice, the mass is
conserved with a very good accuracy.
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II.4-c Conservation Properties on
Momentum Physics

* lateral momentum diffusion term
The continuous formulation of the horizontal diffu-

sion of momentum satisfies the following integral
constraints :

1
e

3

k ⋅∇ × ∇
h

Alm χ( ) − ∇
h

× Alm ζ k( )[ ] dv

D

∫ = 0 (II.4.6a)

∇h ⋅ ∇h Alm χ( ) − ∇h × Alm ζ k( )[ ] dv
D

∫ = 0 (II.4.6b)

U
h

⋅ ∇
h

Alm χ( ) − ∇
h

× Alm ζ k( )[ ] dv
D∫ ≤ 0 (II.4.6c)

if Alm = cste

ζ k ⋅∇ × ∇h Alm χ( ) − ∇h × Alm ζ k( )[ ]dv
D∫ ≤ 0 (II.4.6d)

if Alm = cste

χ ∇h ⋅ ∇h Alm χ( ) − ∇h × Alm ζ k( )[ ]dv
D∫ ≤ 0  (II.4.6e)

(II.4.6a) and (II.4.6b) means that the horizontal
diffusion of momentum conserve both the potential
vorticity and the divergence of the flow, while Eqs
(II.4.6c) to (II.4.6e) mean that it dissipates the energy, the
enstrophy and the square of the divergence. The two latter
properties are only satisfied when the eddy coefficients are
horizontally uniform.

Using (II.1.8) and (II.1.9), and the symmetry or anti-
symmetry properties of the mean and difference operators,
it is shown that the discrete form of the lateral
momentum diffusion given by (II.2.17) and (II.2.18) (i.e.
diffusion along model levels) satisfies all the integral
constraints (II.4.6) (see appendix C). In particular, when
the eddy coefficients are horizontally uniform, a complete
separation of vorticity and horizontal divergence fields is
ensured, so that diffusion (dissipation) of vorticity
(enstrophy) does not generate horizontal divergence
(variance of the horizontal divergence) and vice versa.
When the vertical curl of the horizontal diffusion of
momentum (discrete sense) is taken, the term associated
to the horizontal gradient of the divergence is zero locally.
When the horizontal divergence of the horizontal diffusion
of momentum (discrete sense) is taken, the term
associated to the vertical curl of the vorticity is zero
locally. The resulting term conserves χ and dissipates χ 2

when the eddy coefficient is horizontally uniform.
When (II.2.19) is used (i.e. when a rotation of lateral

momentum diffusive operator is used) none of the above
properties can be established in discrete form.

* vertical momentum diffusion term
As for the lateral momentum physics, the continuous

form of the vertical diffusion of momentum satisfies
following integral constraints :

conservation of momentum, dissipation of horizontal
kinetic energy

1

e3

∂
∂k

Avm

e3

∂Uh

∂k







dv
D∫ = 0

Uh ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k







dv
D∫ = 0

(II.4.7a)

conservation of vorticity, dissipation of enstrophy

1

e3

k ⋅ ∇ × 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D∫ = 0

ζ k ⋅ ∇ × 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D∫ = 0

 (II.4.7b)

conservation of horizontal divergence, dissipation of
square of the horizontal divergence

∇ ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D∫ = 0

χ ∇ ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D∫ = 0

(II.4.7c)

In discrete form, all these properties are satisfied in z-
coordinate (see Appendix C). In s-coordinates, only first
order properties can be demonstrated, i.e. the vertical
momentum physics conserve momentum, potential
vorticity, and horizontal divergence.

II.4-d Conservation Properties on Tracer
Physics

The numerical schemes used for tracer subgridscale
physics are written in such a way that the heat and salt
contents are conserved (equations in flux form, second
order centred finite differences). As a form flux is used to
compute the temperature and salinity, the quadratic form
of these quantities (i.e. their variance) globally tends to
diminish. As for the advective term, there is generally no
strict conservation of mass even if, in practice, the mass
is conserved with a very good accuracy.

* lateral physics: conservation of tracer, dissipa-
tion of tracer variance, i.e.

∇. AlT ℜ ∇T( ) dv
D∫ = 0

(II.4.8)

T ∇. AlT ℜ ∇T( ) dv
D∫ ≤ 0
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* vertical physics: conservation of tracer, dissipa-
tion of tracer variance, i.e.

1
e

3

∂
∂k

AvT

e
3

∂T
∂k







dv

D∫ = 0

(II.4.9)

T 1
e

3

∂
∂k

AvT

e
3

∂T
∂k







dv

D∫ = 0

Using the symmetry or anti-symmetry properties of
the mean and difference operators, it is shown that the
discrete form of tracer physics given in § II.2-c satisfies
all the integral constraints (II.4.8) and (II.4.9) except the
dissipation of the square of the tracer when non-
geopotential diffusion is used (see appendix C). A discrete
form of the lateral tracer physics can be derived which
satisfies the last property. Nevertheless, it requires a
horizontal averaging of the vertical component of the
lateral physics which prevents the use of implicit time
stepping scheme for the vertical diffusion term. It has not
been implemented.
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FORTRAN code. The dashed area indicates the cell in
which variables contained in arrays have the same i-
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Figure III.2: vertical integer indexation used in the FORTRAN code. Note that
the k-axis is oriented downward. The dashed area indicates the cell in which
variables contained in arrays have the same k-index.

III.  DETAILS OF THE MODEL

III.1 NUMERICAL INDEXATION

The array representation used in the FORTRAN code
requires an integer indexation while the analytical
definition of the mesh (see § II.1) is associated with the
use of integer values of (i, j, k)  for T-points whereas all
the other points use both integer and integer and a half
values of (i, j, k) . Therefore a specific integer indexation
must be defined for the latter grid-points (i.e. velocity and
vorticity grid-points).

III.1-a Horizontal Indexation

In the horizontal plane, the indexation shown in fig.
III.1 has been chosen. For an increasing i index (j index),
the T-point and the eastward u-point (northward v-point)
have the same index (see the dashed area in fig.III.1), and
a T-point and its nearby north-east f-point have the same
i-and j-indices.

III.1-b Vertical Indexation

In the vertical plane, the chosen indexation requires
special attention since the k-axis is re-oriented downward
in the FORTRAN code compared to the presentation of the
discrete equations in Chapter II. The sea surface
corresponds to the w-level k=1 like the T-level just below
(Fig. III.2). The last w-level (k=jpk) is either the ocean
bottom or inside the ocean floor while the last T-level is
always inside the floor (Fig. III.2). Note that for an
increasing k index, a w-point and the T-point just below
have the same k index, in opposition to what is done in
the horizontal plane where it is the T-point and the nearby
velocity points in the direction of the horizontal axis that
have the same i or j index (compare the dashed area in
Fig.III.1 and III.2). As the scale factors are chosen to be
strictly positive, a minus sign appears in the FORTRAN
code before all the vertical derivatives of the discrete
equations given in § II.3 and § II.4.
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III.2 MODEL DOMAIN

The model domain is defined once during the
initialisation phase. It consists in defining the horizontal
and vertical meshes, the time stepping (from parameters
given in the namelist  file, see § III.11), the mask
arrays and the islands (key_islands defined). All the
arrays related to a particular ocean model configuration
(grid-point position, scale factors, masks) can be save in a
file if nmsh=1  (namelist  parameter). This can be
particularly useful for plots and off-line diagnostics.

III.2-a Model Mesh

The ocean mesh (i.e. the position of all the scalar and
vector points) is defined by the transformation that gives
(λ ,ϕ , z)  as a function of (i, j, k) . The grid-points are
located at integer or integer and a half values of (i, j, k)  of
(λ ,ϕ , z)  as indicated in Table II.1 (see § II.1). The
associated scale factors are defined using the analytical
first derivative of the transformation in (I.3.1). These
definitions are done in two routines, domhgr.F and
domzgr.F, which provide the horizontal and vertical
meshes, respectively. This section briefly describes how
to create the two meshes.

* horizontal mesh
In a horizontal plane, the location of all the model

grid points is defined from the analytical expressions of
the latitude ϕ  and the longitude λ  as a function of
(i, j). The horizontal scale factors are calculated using
(I.3.1). The user must provide the analytical expression of
the functions (λ ,ϕ )  and their first derivatives ( ′λ , ′ϕ )
with respect to i and j. This is done in routine domhgr.F
as statement functions. In most applications, the latitude
and longitude are function of a single value (j and i,
respectively) (geographical configuration of the mesh). In
this case the horizontal mesh definition reduces to define
ϕ ( j ) , ′ϕ ( j ) , λ ( i )  and ′λ ( i )  as statement functions. The
model computes the grid-point positions and scale factors
in the horizontal plane as follows:

λ t ≡ glamt = λ ( i )

λ u ≡ glamu = λ ( i + 1 2)

λ v ≡ glamv = λ ( i )

λ f ≡ glamf = λ ( i + 1 2)

  ,   

ϕ t ≡ gphit = ϕ ( j )

ϕ u ≡ gphiu = ϕ ( j )

ϕ v ≡ gphiv = ϕ ( j + 1 2)

ϕ f ≡ gphif = ϕ ( j + 1 2)

e1t ≡e1t =ra ′λ (i)cosϕ ( j)

e1u ≡e1u=ra ′λ (i + 1 2)cosϕ ( j)

e1v ≡e1v=ra ′λ (i)cosϕ ( j + 1 2)

e1 f ≡e1f =ra ′λ (i + 1 2)cosϕ ( j + 1 2)

, 

e2t ≡e2t =ra ′ϕ ( j)

e2u ≡e2u=ra ′ϕ ( j)

e2v ≡e2v=ra ′ϕ ( j + 1 2)

e2 f ≡e2 f =ra ′ϕ ( j + 1 2)

where the last letter of each computational name indicates
the grid point considered and ra is the earth radius (defined
in parctl.F along with all universal constants, see § IV.3-
b). Note that the horizontal position and scale factors of
w-points are exactly equal to those of T-points, thus no
specific arrays are defined at those grid-points. In
particular applications, such as the global ocean model
[Madec and Imbard 1996], the horizontal mesh is
computed from a semi-analytical method. In that case it is
read in routine hgrcoo.F (called in domhgr.F if ngrid=1
(namelist parameter).

* vertical mesh
The vertical location of w- and T-levels is defined

from an analytic expression of the depth z whose analytic
derivative with respect to k provides the vertical scale
factors. The formulation of the analytic expression of z
strongly depends on the choice of the vertical coordinate.
In z-coordinates, z is a function of the single value k,
while it depends on (i, j, k)  in s-coordinates. As for the
horizontal, the user must provide the analytical
expression of both z and its first derivative with respect to
k. This is done in routine domzgr.F using statement
functions, defined in include files domzgr.z .h  or
domzgr.s.h depending on the cpp option chosen for the
vertical coordinate system (default option o r
key_s_coord defined, respectively). The following
function is proposed as a standard for z-coordinates:

z (k ) = h0 − h1 k − h2 h3 log cosh (k − h4 ) h3( )[ ]
e3 (k ) = −h1 − h2 tanh (k − h4 ) h3( )

(III.2.1)

where k = 1 to jpk  for w -levels and k = 1 + 1 2  to
k = jpk + 1 2 for T-levels. Such an expression allows us
to define a nearly uniform vertical location of levels at the
ocean top and bottom with a smooth hyperbolic tangent
transition in between (Table III.1, Fig. III.3). We have
chosen a 10 m (500 m) resolution in the surface
(bottom) layers and a depth which varies from 0 at the sea
surface to a minimum of -5000 m. This leads to the
following conditions:

e3 (1 + 1 2) = 10.

e3 ( jpk − 1 2) = 500.

z (1) = 0.

z ( jpk ) = −5000.

(III.2.2)

The five coefficients h0 to h4 in (III.2.1) are determined
such that (III.2.2) is satisfied. To do so, we first make an
arbitrary choice of jpk and h

3
, here jpk = 31 and h

3
= 3 .

Using the first three conditions in (III.2.2), we express
h

0 , h1  and h
2  as a function of h

4
, and then we determine
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Figure III.3 : Default vertical mesh. Vertical level functions for (a) T-
point depth and (b) the associated scale factor as computed from
(III.2.1) in z-coordinates.

h
4

∈ 1, jpk[ ]  using a bisection method such that the last
condition in (III.2.2) is satisfied. In the present case
this leads to the following values: h

0
= 4762.96 ,

h
1

= 255. 58 , h
2

= 245. 58 , and h
4

= 21. 43 . The resul-
ting depths and scale factors as a function of the model
levels are shown in Fig. III.3. An off-line program is
available (OPAZGR) for defining vertical locations with
numerical constraints other than (III.2.2) or a different
number of vertical levels (see § IV.3).

In s-coordinates (key_s_coord defined), the depths
of the model levels are defined from the product of a depth
field and a stretching function and its derivative,
respectively :

z(k) = h(i, j) z
o
(k)  ,  e

3
(k) = h(i, j) ′z

o
(k) (III.2.3)

where h is the depth of the last w-level ( k = jpk ) defined
at T-point location in the horizontal and z

o
 is a function

which varies from 0 at the sea surface to 1 at the ocean
bottom. The depth field h is not necessary the ocean depth
as a mixed step-like and bottom following representation
of the topography can be used (see § III.2-b). It is read in
from file numbat  in dommba.F  routine. z

o
 and its

derivative are set in domzgr.s.h. They are chosen by
default as the function (III.2.1) divided by h

o
.

Note that z and e
3
 can be either a single or multiple

value function. In order to minimise the change in the
computer code when switching from z- to s-coordinates,
they are introduced as statement functions in the include
file stafun.h.

LEVEL GDEPT GDEPW E3T E3W

1 5.00 0.00 10.00 10.00

2 15.00 10.00 10.00 10.00

3 25.00 20.00 10.00 10.00

4 35.01 30.00 10.01 10.00

5 45.01 40.01 10.01 10.01

6 55.03 50.02 10.02 10.02

7 65.06 60.04 10.04 10.03

8 75.13 70.09 10.09 10.06

9 85.25 80.18 10.17 10.12

1 0 95.49 90.35 10.33 10.24

1 1 105.97 100.69 10.65 10.47

1 2 116.90 111.36 11.27 10.91

1 3 128.70 122.65 12.47 11.77

1 4 142.20 135.16 14.78 13.43

1 5 158.96 150.03 19.23 16.65

1 6 181.96 169.42 27.66 22.78

1 7 216.65 197.37 43.26 34.30

1 8 272.48 241.13 70.88 55.21

1 9 364.30 312.74 116.11 90.99

2 0 511.53 429.72 181.55 146.43

2 1 732.20 611.89 261.03 220.35

2 2 1033.22  872.87 339.39 301.42

2 3 1405.70 1211.59 402.26 373.31

2 4 1830.89 1612.98 444.87 426.00

2 5 2289.77 2057.13 470.55 459.47

2 6 2768.24 2527.22 484.95 478.83

2 7 3257.48 3011.90 492.70 489.44

2 8 3752.44 3504.46 496.78 495.07

2 9 4250.40 4001.16 498.90 498.02

3 0 4749.91 4500.02 500.00 499.54

3 1 5250.23 5000.00 500.56 500.33

Table III.1: default vertical mesh in z-coordinates as computed
from (III.2.1).

III.2-b Bathymetry and Mask

Whatever the vertical coordinate used, the model offers
the possibility of representing the bottom topography
with steps that follow the face of the model cells (step
like topography) [Madec et al. 1996]. As two types of
vertical coordinates can be used, the bottom topography
can be represented in three discrete ways: a step-like
representation in z-coordinates, or in s-coordinates, a pure
terrain following representation or a hybrid representation
which mixes the former two (Fig. III.4). The distribution
of the steps in the horizontal is defined in a 2D integer
array, mbathy, which gives the number of ocean levels
(i.e. those that are not masked) at each T-point. If
ntopo=1 (namelist parameter), the 2D array is read in
from a formatted file, bathymetry, that is constructed
from the ETOPO 5'x5' global bathymetric field using the
off-line program OPABAT (see § IV.3). This field is of
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(b)
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Figure III.4: The ocean bottom as seen by the model: (a) step-like
representation (z-coordinates), (b) terrain following representation (s-
coordinates) and (c) hybrid representation (s-coordinates).

paramount importance. It contains all the information
required to define the geometry of the coastlines, to
identify the islands (key_islands defined), and to
compute all the 3D mask fields (i.e. the step-like repre-
sentation of the bottom topography).

The mbathy array takes values from -N to jpk-1 and
provides the following information: mbathy(i, j) = −n ,
n∈ 0, N] ], T-points are land points of the nth island;
mbathy(i, j) = 0 , T-points are land points of the main
land (continent); mbathy(i, j) = k ∈ 0, jpk] [ , the first k T-
and w-points are ocean points, the others land points.

From the mbathy array, the mask fields are defined as
follows:

tmask(i, j,k) =  1 or 0  whether k ≤ mbathy(i, j)  or not

umask(i, j, k) = tmask(i, j, k) × tmask(i + 1, j, k)
vmask(i, j, k) = tmask(i, j, k) × tmask(i, j + 1, k)
fmask(i, j, k) = tmask(i, j, k) × tmask(i + 1, j, k)

                   ×tmask(i, j + 1, k) × tmask(i + 1, j + 1, k)

Note that wmask is not defined as it is exactly equal
to tmask with the numerical indexation used (§ III.1).
Moreover, the specification of closed lateral boundaries
requires that at least the first and last rows and columns of
mbathy array are set to zero. In the particular case of an
east-west cyclic boundary condition, mbathy has its last
column equal to the second one and its first column equal
to the last but one (and so the mask arrays) (see § III.10).

III.3  PROPERTIES OF SEAWATER

III.3-a Equation of State
(neos = 0, 1 or 2, namelist parameter)

It is necessary to know the equation of state for the
ocean very accurately to determine stability properties
(especially the Brunt-Vaisälä frequency), particularly in
the deep ocean. The ocean density is a non linear
empirical function of in situ temperature, salinity and
pressure. The reference is the equation of state defined by
the Joint Panel on Oceanographic Tables and Standards
[UNESCO, 1983]. It was the standard equation of state
used in the previous release of OPA. Even though this
computation is fully vectorized, it is quite time
consuming (15  to 20% of the total CPU time) as it
requires the prior computation of the in situ temperature
from the model potential temperature using the Bryden
[1973] polynomial for adiabatic lapse rate and a 4th order
Runge-Kutta integration scheme. In the present release,
we have chosen the Jackett and McDougall [1995]
equation of state for seawater. This equation has been
designed to allow the computation of the in situ ocean
density directly as a function of potential temperature

relative to the sea surface (an OPA variable), the practical
salinity (another OPA variable) and the pressure
(assuming no pressure variation along geopotential
surfaces, i.e. the pressure in decibars is approximated by
the depth in meters). Both the UNESCO [1983] and
Jackett and McDougall [1995] equations of state have the
same algebraic expression except that the values of the
different coefficients have been adjusted by Jackett and
McDougall [1995] in order to use directly the potential
temperature instead of the in situ one. The use of this
equation of state reduces the CPU time of the in situ
density computation to about 3% of the total CPU time,
while maintaining a quite accurate evaluation of the
density.

In the computer code, a true density, d, is computed,
i.e. the ratio of seawater volumic mass over ρ

o
, a

reference volumic mass (rau0, namelist parameter). The
default option (neos=0) is the Jackett and McDougall
[1995] equation of state. It is highly recommended to use
it. Nevertheless, for process studies, it is often convenient
to use a linear approximation of the density. In this case,
there is no longer a distinction between in situ and
potential density as density does not depends on pressure
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or depth. Two linear formulations are available: a
function of T only (neos=1) and a function of both T and
S (neos=2):

d(T ) = ρ(T ) ρ
0

= 1.028 − α T

(III.3.1)
d(T, S) = ρ(T, S) ρ

0
= β S − α T

where α and β are the thermal and haline expansion
coefficients, and ρ

o
, a reference volumic mass. Their

default values ( α = 2. 10−4 ,  β = 0.029  and
ρ

o
= 1020 kg / m3) can be modified through ralpha, rbeta

and rau0 (namelist parameters). Note that when d is a
function of T only (neos=1), the salinity is a passive
tracer.

III.3-b Brunt-Vaisälä Frequency
(neos = 0, 1 or 2, namelist parameter)

An accurate computation of the ocean stability (i.e. of
N , the brunt-Vaisälä frequency) is of paramount
importance as it is used in several ocean parameterisations
(namely the 1.5 vertical turbulent closure, Richardson
number dependent vertical diffusion, enhanced vertical
diffusion, non-penetrative convective adjustment,
isopycnal diffusion). In particular, one must be aware that
N has to be computed with an in situ reference, i.e. at the
local pressure. The expression of N depends on the type
of equation of state used (neos, namelist parameter).

For neos=0 (Jackett and McDougall [1995] equation of
state), the McDougall [1987] polynomial expression is
used with the pressure in decibar approximated by the
depth in meters:

N 2 = g β (T
k+1 2

, ′S , z
w

) e
3w

α β (T
k+1 2

, ′S , z
w

) δ
k+1 2

T[ ] − δ
k+1 2

S[ ]( ) (III.3.2)

where T  is the potential temperature, ′S  a salinity
anomaly ( ′S = S

k+1 2
− 35.), zw  the w-point depth (the

gridpoint at which N is computed), and α (β) the thermal
(haline) expansion coefficient. Both α and β depend on
potential temperature, salinity which are averaged at w-
points prior to the computation.

When a linear equation of state is used (neos=1 or 2,
namelist parameter), (III.3.2) reduces to:

N 2 = g

e3w

β δ k+1 2 S[ ] − α δ k+1 2 T[ ]( ) (III.3.3)

where α and β are the constant coefficients used to defined
the linear equation of state (III.3.1).

III.3-c Specific Heat (rcp, namelist parameter)

The specific heat, C
p
, is a function of temperature,

salinity and pressure [UNESCO, 1983]. It is only used in
the model to convert surface heat fluxes into surface
temperature increase, thus the pressure dependence is
neglected. The dependence on T and S is weak. For
example, with S = 35 psu, C

p
 increases from 3989 to

4002 when T varies from -2°C to 31°C. Therefore, C
p

has been chosen as a constant: Cp = 4. 10−3 J kg−1 ° K −1

and is set as rcp (namelist parameter).

III.3-d Freezing Point of Seawater

The freezing point of seawater is a function of salinity
and pressure [UNESCO, 1983]:

T
f

S, p( ) = −0.0575 S + 1.710523 10−3 S2 3

−2.154996 10−4 S2 − 7. 5310−3 p
(III.3.3)

(III.3.3) is only used to compute the potential freezing
point of sea water (i.e. referenced to the surface p=0), thus
the last term in (III.3.3) has been dropped. The freezing
point is introduced in the model as a statement function
in the stafun.h include file.
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III.4  AIR-SEA BOUNDARY CONDITIONS

III.4-a Momentum Fluxes
(default option or key_tau or key_coupled defined)

The surface boundary condition on momentum is
given by the stress exerted by the wind. At the surface
( z = 0 ), the momentum fluxes are prescribed as the
boundary condition on the vertical turbulent momentum
fluxes (see routine dynzdf.F),

Avm

e
3

∂U
h

∂k







z=1

=
τ

u
, τ

v( )
ρ

o

(III.4.1)

where (τ
u
, τ

v
)  are the two components of the wind stress

vector in the (i, j) coordinate system.
The wind stress field is defined and updated at each

time step in routine tau.F which is called inside the time
loop by step.F routine. It can be prescribed analytically
(default option), or by an atmospheric model through the
OASIS coupler [Terray 1994] (key_coupled defined), or
read in numtau file (key_tau defined). In the latter case,
an off-line program, OPADTA, is available to interpolate
either climatological or atmospheric model output wind
stress field onto the ocean mesh (see § IV.3-b).

III.4-b Heat and Fresh Water Fluxes
(default option or key_flx or key_coupled defined)

At the surface ( z = 0 ), the heat and fresh water fluxes
are prescribed as boundary conditions on the vertical
turbulent fluxes on T and S (see routine trazdf.F),

AvT

e3

∂T

∂k







z=0

= Q

ρo Cp

,
AvT

e3

∂S

∂k







z=0

= EMPS
z=0

(III.4.2)

where EMP is the evaporation minus precipitation minus
river runoff plus the rate of change of the sea ice
thickness budget, S

z=0
 is the sea surface salinity and Q is

the non-penetrative part of the net surface heat flux, Qt.
(see § III.4-c). Note that even if the budget of EMP is
zero in average over the whole ocean domain, the
associated salt flux is not, as sea-surface salinity and
EMP are usually highly correlated.

The Q and EMP fields are defined and updated in
routine flx.F which, like tau.F, is called at each time step
at the beginning of the step.F routine. They can be
prescribed analytically (default option), or by an
atmospheric model through the OASIS coupler [Terray
1994] (key_coupled  defined), or read in from the
numflx file (key_flx defined). In the latter case, an off-
line program, OPADTA, is available to linearly
interpolate either climatological or model output Q and
EMP fields onto the model mesh (see § IV.3-b).

In forced mode (default option or key_flx defined), a
feedback term must be added to the specified surface heat
flux Q

o
 [Madec and Delecluse 1997]:

Q = Q
o

+ dQ dT T − SST( ) (III.4.3)

where SST is a sea surface temperature field (observed or
climatological), T is the model surface layer temperature
and dQ dT  is a negative feedback coefficient usually
taken equal to −40. W m2 ° K . For a 50 m mixed-layer
depth, this value corresponds to a relaxation time scale of
two months. This term ensures that if T perfectly fits
SST then Q is equal to Q

o
. In the fresh water budget, a

feedback term can also be added:

EMP = EMP
o

+ γ
s

−1 S − SSS( ) S (III.4.4)

where EMPo is a net surface fresh water flux (observed,
climatological or atmospheric model product), SSS is
usually a time interpolation of the seasonal-mean sea
surface salinity of Levitus [1982], S is the model surface
layer salinity and γ

S
 is a negative feedback coefficient

which is chosen so that the associated time scale is the
same on T and S. Unlike heat flux, there is no physical
justification for the feedback term in (III.4.4) as the
atmosphere does not care about ocean surface salinity.

III.4-c Penetrative Solar Radiation
(key_flxqsr defined)

When the penetrative solar radiation option is used
(key_flxqsr defined), the solar radiation penetrates the
top few meters of the ocean, otherwise all the heat flux is
absorbed in the first ocean level (default option ). A
formulation including extinction coefficients is assumed
for the downward irradiance I [Paulson and Simpson,
1977] :

I z( ) = Q
sr

Re−z ξ1 + 1 − R( )e−z ξ2[ ] (III.4.5)

where Q
sr

 is the penetrative part of the surface heat flux,
ξ

1
and ξ

2
 are two extinction length scales and R

determines the relative contribution of the two terms. The
default values used correspond to a Type I water in
Jerlov’s [1968] classification: ξ

1
= 0. 35m , ξ

2
= 23m

and R = 0. 58  (xsi1, xsi2 and rabs namelist parameters,
respectively). A new term is thus added to the time
evolution equation of temperature while the surface
boundary condition of vertical diffusion is modified to
take into account only the non-penetrative part of the
surface heat flux:

 

∂T

∂t
= K + 1

ρoCp e3

∂I

∂k

Q = QT − Qsr

(III.4.6)
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The additional term in (III.4.6) is discretized as follows:

1
ρ

o
C

p
e

3

∂I
∂k

≡ 1
ρ

o
C

p
e

3T

δ
k

I
w[ ] (III.4.7)

with I
w
(k) = Q

sr [ Re−zw (i, j,k) ξ1 + (1 − R)e−zw (i, j,k) ξ2 ]. I
w

 is
masked (no flux through the ocean bottom), so all the
solar radiation that reaches the last ocean level is absorbed
in that level. Note that in z-coordinates, the depth of T-
levels depends on the single variable k .
A one dimensional array of the coefficients
gdsr(k) = Re−zw (k) ξ1 + 1 − R( )e−zw (k) ξ2  can then be com-
puted once and saved in central memory. Moreover nksr,
the level at which gdrs becomes negligible (less than the
computer precision) is computed once and the trend
associated with the penetration of the solar radiation is
only added until that level. The trend associated with the
penetration of the solar radiation is added to the

temperature trend and the surface heat flux modified in
routine traqsr.F.
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III.5  SURFACE PRESSURE GRADIENT COMPUTATION

The computation of the surface pressure gradient with
a rigid lid assumption requires to compute ∂

t
ψ , the time

evolution of the barotropic streamfunction. ∂
t
ψ  is

solution of an elliptic equation (I.2.4) for which two
solvers are available, a Successive-Over-Relaxation
(SOR) or a preconditioned conjugate gradient (PCG)
[Rahier 1987, Madec et al. 1988, Madec 1990]. The
PCG is a very efficient method for solving elliptic
equations on vector computers. It is a fast and rather easy
to use method, which is an attractive feature for a large
number of ocean situations (variable bottom topography,
complex coastal geometry, variable grid spacing, islands,
open or cyclic boundaries, etc ...). It does not require the
search of an optimal parameter as in the SOR method.
Nevertheless, the SOR has been kept because it is a linear
solver, a very useful property when using the adjoint
model of OPA.

The surface pressure gradient is computed in routine
dynspg.F. When key_nobsf is defined, the barotropic
flow is assumed to be zero all along the simulation so
that no solver is used. This rather non-physical option
can be used for debugging purposes. The default option is
the use of PCG or SOR depending on nbsfs (namelist
parameter). At each time step the time derivative of the
barotropic streamfunction is the solution of  (II.2.3).
Introducing the following coefficients:

Ci, j
N−S =e2v (i, j) Hv(i, j)e1v (i, j)( ) , Ci, j

E−W =e1u (i, j) Hu(i, j)e2u (i, j)( ) ,

and Bi, j = δ i e2v Mv( ) − δ j e1u Mu( ),

the five-point finite difference equivalent equation (II.2.3)
can be rewritten as:

C
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∂t







i+1, j

+ C
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E−W ∂ψ
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i, j+1

+ C
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i−1, j

+ C
i, j

E−W ∂ψ
∂t







i, j−1

− C
i+1, j

N−S + C
i, j

N−S + C
i, j+1

E−W + C
i, j

E−W( ) ∂ψ
∂t







i, j

= B
i, j

(III.5.1)

(III.5.1) is a linear symmetric system of equations. All
the elements of the corresponding matrix A vanish except
those of five diagonals. With the natural ordering of the
grid points (i.e. from west to east and from south to
north), the structure of A  is block-tridiagonal with
tridiagonal or diagonal blocks. A is a positive-definite
symmetric matrix of size ( jpi jpj)2 , and B , the right
hand side of (III.5.1), is a vector.

III.5-a Successive Over Relaxation
(nbsfs=2, namelist parameter)

Let us introduce the four cardinal coefficients:
A

i, j

S = C
i, j

N−S D
i, j

, A
i, j

W = C
i, j

E−W D
i, j

, A
i, j

E = C
i, j+1

E−W D
i, j

 and
A

i, j

N = C
i+1, j

N−S D
i, j

, and define B̃
i, j

= B
i, j

D
i, j

, where
D

i, j
= C

i+1, j

N−S + C
i, j

N−S + C
i, j+1

E−W + C
i, j

E−W  (i.e. the diagonal of A).
(III.5.1) can be rewritten as:
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The SOR method used is an iterative method. Its
algorithm can be summarised as follows [see Haltiner and
Williams 1980 for further discussion]:

initialisation (evaluate a first guess from former time
step computations)

∂ψ
∂t







i, j

0

= 2
∂ψ
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i, j

t

− ∂ψ
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i, j

t−1

, (III.5.3)

iteration n, from n=0 until convergence, do :
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+ ω R
i, j

n (III.5.4b)

where ω satisfies 1 ≤ ω ≤ 2. An optimal value exists for
ω which accelerates significantly the convergence, but it
has to be adjusted empirically for each model domain,
except for an uniform grid where an analytical expression
for ω can be found [Richtmayer and Morton 1967]. This
parameter is defined as sor, a namelist parameter. The
convergence test is of the form:

δ = R
i, j

n R
i, j

n

i, j

∑ B̃
i, j

n B̃
i, j

n

i, j

∑ ≤ ε (III.5.5)

where ε is the absolute precision that is required. It is
highly recommended to use a ε smaller or equal to 10−2

as larger values may leads to numerically induced basin
scale barotropic oscillations, and to use a two or three
order of magnitude smaller value in eddy resolving
configuration. The precision of the solver is not only a
numerical parameter, but influences the physics. Indeed,
the zero change of kinetic energy due to the work of
surface pressure forces in rigid-lid approximation is only
achieved at the precision demanded on the solver (§ C.1-
e). The precision is specified by setting eps (namelist
parameter). In addition, two other tests are used to stop
the iterative algorithm. They concern the number of
iterations and the module of the right hand side. If the
former exceeds a specified value, nmax  (namelist
parameter), or the latter is greater than 1015 , the whole
model computation is stopped while the last computed
time step fields are saved in the standard output file. In
both cases, this usually indicates that there is something
wrong in the model configuration (error in the mesh, the
initial state, the input forcing, or the magnitude of the
time step or of the mixing coefficients). A typical value
of nmax is a few hundred for ε = 10−2 , increasing to a
few thousand for ε = 10−12 .

The vectorization of the SOR algorithm is not
straightforward. (III.5.4) contains two linear recurrences
on i and j which inhibit the vectorisation (§ IV.2-a).

Therefore (III.5.4a) has been rewritten as:
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S R
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n (III.5.6b)
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i, j

n = R
i, j

n − ω A
i, j

W R
i−1, j

n (III.5.6c)

If the three equations in (III.5.6) are solved inside the
same do-loop, (III.5.4a) and (III.5.6) are strictly
equivalent. In the model they are solved successively over
the whole domain. The convergence is slower but
(III.5.6a) and (III.5.6b) are vector loops on i-index (the
inner loop) and (III.5.6c) is adapted to Cray vector
computers by using a routine from the Cray library
(namely the FOLR routine) to solve the first-order linear
recurrence. The SOR method is very flexible and can be
used under a wide range of conditions, including irregular
boundaries, interior boundary points, etc. Proofs of
convergence, etc. may be found in the standard numerical
methods texts for partial equations.

III.5-b Preconditioned Conjugate Gradient
(nbsfs=1, namelist parameter)

A  is a definite positive symmetric matrix, thus
solving the linear system (III.5.1) is equivalent to the
minimisation of a quadratic functional:

Ax = b ⇔ x = inf
y

φ (y) , φ (y) = 1 2 Ay,y − b,y

where ,  is the canonical dot product. The idea of the
conjugate gradient method is to search the solution in the
following iterative way: assuming that x n  is obtained,
x n+1  is searched under the form x n+1 = x n + α ndn  which
satisfies:

x n+1 = inf
y=xn +α dn φ (y) ⇔ dφ

dα
= 0

and expressing φ (y)  as a function of α, we obtain the
value that minimises the functional:

α n = rn ,rn A dn ,dn

where rn = b − A x n = A (x − x n )  is the error at rank n.
The choice of the descent vector dn  depends on the error:
dn = rn + β n dn−1 . β n  is searched such that the descent
vectors form an orthogonal base for the dot product linked
to A. Expressing the condition A dn ,dn−1 = 0 the value
of β n  is found: β n = rn ,rn rn−1 ,rn−1 . As a result, the
errors rn  form an orthogonal base for the canonic dot
product while the descent vectors dn  form an orthogonal
base for the dot product linked to A . The resulting
algorithm is thus the following one:



III.5 SURFACE PRESSURE GRADIENT COMPUTATION 41

initialisation :

x o = ∂ψ
∂t







i, j

0

= 2
∂ψ
∂t







i, j

t

− ∂ψ
∂t







i, j

t−1

, the initial guess

r0 = d0 = b − A x 0

γ
0

= r0 ,r0

iteration n, from n=0 until convergence, do :

zn = Adn

α
n

= γ
n

zn ,dn

x n+1 = x n + α
n

dn

rn+1 = rn − α
n

zn (III.5.7)

γ
n+1

= rn+1 ,rn+1

β
n+1

= γ
n+1

γ
n

dn+1 = rn+1 + β
n+1

dn

The convergence test is:

δ = γ
n

b,b ≤ ε (III.5.7)

where ε is the absolute precision that is required. As for
the SOR algorithm, both the PCG algorithm and the
whole model computation are stopped when the number
of iteration, nmax, or the module of the right hand side
exceeds a specified value (see § III.5-a for further
discussion). The precision and the maximum number of
iteration are specified by setting eps and nmax (namelist
parameters).

It can be demonstrated that the algorithm is optimal,
provides the exact solution in a number of iterations equal
to the size of the matrix, and that the convergence rate is
all the more fast as the matrix is closed to identity (i.e.
the eigen values are closed to 1). Therefore, it is more
efficient to solve a better conditioned system which has
the same solution. For that purpose, we introduce a
preconditioning matrix Q which is an approximation of
A but much easier to invert than A and solve the system:

Q−1 A x = Q−1 b (III.5.8)

The same algorithm can be used to solve (III.5.7) if
instead of the canonical dot product the following one is
used: a , b

Q
= a , Q b , and if b̃ = Q−1 b  and

Ã = Q−1 A  are substituted to b  and A  [Madec et al.,
1988]. In OPA, Q is chosen as the diagonal of A, i.e.
the simplest form for Q so that it can be easily inverted.
In this case, the discrete formulation of (III.5.8) is in fact
given by (III.5.2) and thus the matrix and right hand side
are computed independently from the solver used.

III.5-c Boundary Conditions: Islands
(key_islands defined)

The boundary condition used for both solvers is that
the time derivative of the barotropic streamfunction is
zero along all the coastlines. When islands are present in
the model domain, additional computations must be done
to determine the barotropic streamfunction with the
correct boundary conditions [Madec and Marti 1990].
This is detailed below.

The model does not recognise itself the islands which
must be defined using bathymetry information, i.e.
mbathy array, equals -1 over the first island, -2 over the
second, ... , -N over the Nth island (see § III.2-b). The
model determines the position of island grid-points and
defines a closed contour around each island which will be
used to compute the circulation around each island. The
closed contour is formed of the ocean grid-points which
are the closest to the island.

First, the island barotropic streamfunctions ψ
n
 are

computed using the PCG (they are solutions of (III.5.1)
with the right-hand side equals to zero and with ψ

n
= 1

along the island n and ψ
n

= 0  along the other coastlines)
(Note that specifying 1 as boundary condition on an
island for ψ  is equivalent to define a specific right hand
side for (III.5.1) ). The precision of this computation can
be very high since it is done once. The absolute
precision, epsisl, and the maximum number of iteration,
nmisl , are the namelist  parameters used for that
computation. Their typical values are epsisl = 10−10  and
nmisl = 4000 . Then the island matrix A is computed
from (I.2.8) and reversed. At each time step, ψ

o
, the

solution of (I.2.4) with ψ
o

= 0 along all coastlines, is
computed using either SOR or PCG. It has to be noted
that the first guess of this computation is defined as in
(III.5.3) except that ∂

t
ψ

o
 is used, not ∂

t
ψ . Indeed we are

computing ∂
t
ψ

o
 which is usually far different from ∂

t
ψ .

Then, it is easy to find the time evolution of the
barotropic streamfunction on each island and to deduce
∂

t
ψ  using (I.2.9) in order to compute the surface

pressure gradient. Note that the value of the barotropic
streamfunction itself is also computed as the time
integration of ∂

t
ψ  for further diagnostics.

References
(see OPA-Bibliography when the year is in bold)

Haltiner G. J. and R. T. Williams, 1980: Numerical prediction
and dynamic meteorology. John Wiley & Sons Eds.,
second edition, 477pp.

Richtmyer, R. D., and K.W. Morton, 1967: Difference
methods for initial-value problems. Interscience
Publisher, Second Edition, 405pp.



42 III.   DETAILS OF THE MODEL

momentum lateral physics

direction
default option : momentum diffusion along model level surfaces

or key_dynhdfgeop : momentum diffusion along geopotential level surfaces(available in
s-coordinates only, as in z-coordinates, iso-model level diffusion is
geopotential diffusion)

or key_dynhdfiso : momentum diffusion along isopycnal surfaces (available for second
order operator only)

type of operator
default option : harmonic operator (second order)

or key_dynhdfbilap : biharmonic operator (fourth order)

eddy viscosity coefficients
default option : constant coefficient settled as a namelist parameter

or key_dynhdfcoef1d : space varying coefficient with depth
or key_dynhdfcoef2d : space varying coefficient with latitude and longitude
or key_dynhdfcoef3d : space varying coefficient with latitude, longitude and depth

tracer lateral physics

direction
default option : tracer diffusion along model level surfaces

or key_trahdfgeop : tracer diffusion along geopotential level surfaces (available in
s-coordinates only, as in z-coordinates, the iso-model level diffusion
is geopotential diffusion)

or key_trahdfiso : tracer diffusion along isopycnal surfaces (available for second
order operator only)

type of operator
default option : harmonic operator (second order)

or key_trahdfeiv : eddy induced velocity parameterisation (requires that key_trahdfiso
is defined but not key_trahdfbilap)

or key_trahdfbilap : biharmonic operator (fourth order)
eddy viscosity coefficients

default option : constant coefficient settled as a namelist parameter
or key_trahdfcoef1d : space varying coefficient with depth
or key_trahdfcoef2d : space varying coefficient with latitude and longitude
or key_trahdfcoef3d : space varying coefficient with latitude, longitude and depth

Table III.2 : list of available options on momentum and tracer lateral physics.

III.6  LATERAL PHYSICS

The lateral physics on momentum and tracer equations
have been given in §I.5-b and their discrete formulation in
§II.2-c. In this section we further discuss the choices that
underlie each lateral physics option. Choosing one lateral
physics means for the user defining, (1) the space
variation of the eddy coefficients (constant, longi-
tude/latitude, and/or depth dependent coefficients); (2) the
direction along which the lateral diffusive fluxes are
evaluated (model level, geopotential or isopycnal
surfaces); and (3) the type of operator used (harmonic, or
biharmonic operators, and for tracers only, eddy induced
advection on tracers). These three aspects of the lateral
diffusion are controlled through a series of combination of

cpp variables given in Table III.2). The default option is
an harmonic (Laplacian) operator on both dynamics and
tracer, acting along model surfaces with constant
coefficient over the whole domain.

III.6-a Space Variation of Lateral Eddy
Coefficients (default option or

 key_dynhdfcoef~d or key_trahdfcoef~d defined)

Introducing a space variation in the lateral eddy
coefficients used changes the model in core memory
requirement, adding up to four three-dimensional arrays
for geopotential or isopycnal second order operator applied
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dynamics default option key_dynhdfbilap
(harmonic) (biharmonic)

default option key_dynhdfiso default option key_dynhdfgeop
(iso-level) key_dynhdfgeop (iso-level) (iso-z)

default option same value same value same value
everywhere everywhere everywhere

key_dynhdfcoef1d T-levels T-levels T-levels
array(k) and w-levels

key_dynhdfcoef2d T- and f-points u-, v- and u- and v-points
array(i,j) w-points

key_dynhdfcoef3d T- and f-points T-, uw-, vw- u- and v-points
array(i,j,k) and f-points

tracers default option key_trahdfbilap
(harmonic) (biharmonic)

default option key_trahdfiso default option key_trahdfgeop
(iso-level) key_trahdfgeop (iso-level) (iso-z)

key_trahdfeiv*
default option same value same value same value

everywhere everywhere everywhere
key_trahdfcoef1d T-levels T-levels T-levels

array(k) and w-levels
key_trahdfcoef2d u- and v-points u-, v- and T-points

array(i,j) w-points
key_trahdfcoef3d u- and v-points u-, v- and T-points

array(i,j,k) w-points
* the eddy induced velocity coefficient is defined at the same gridpoint as the eddy diffusivity coefficient.

Table III.3 : Level or gridpoint position of the lateral eddy viscosity and diffusivity coefficients as a function of the lateral physics and the vertical
coordinates used.

to momentum (Table III.3). Six cpp variables control the
space variation of eddy coefficients: three for momentum
and three for tracer (Table III.2). They allows to specify a
space variation in the three space directions, in the
horizontal plane, or in the vertical only. The default
option is a constant value over the whole ocean on
momentum and tracers which is specified through ahm0
and aht0 (namelist parameter). The number of additional
arrays that have to be defined and the gridpoint position at
which they are defined depend on both the space variation
chosen and the type of operator used (Table III.3). The
resulting eddy viscosity and diffusivity coefficients can be
either single or multiple value functions. Changes in the
computer code when switching from one option to
another have been minimized by introducing the eddy
coefficients as statement function (include file stafun.h).
The specification of the space variation of the coefficient
is settled in inihdf.F, or more precisely in include files
inihdf.dyn.coef~d.h and inihdf.tra.coef~d.h, with ~=1, 2 or
3. The user have to change these include files following
his/her desiderata.

A space variation in the eddy coefficient appeals
several remarks:

(1) the momentum diffusive operator acting along
model level surfaces is written in terms of curl and
divergent components of the horizontal current (§II.2-c).

Although the eddy coefficient can be set to different
values in these two terms, this option is not available.

(2) with a horizontal varying viscosity, the quadratic
integral constraints on enstrophy and on the square of the
horizontal divergence for operators acting along model-
surfaces are no more satisfied (Appendix C).

(3) for isopycnal diffusion on momentum or tracers,
an additional purely horizontal background diffusion with
uniform coefficient can be added by setting a non zero
value of ahmb0 or ahtb0, a background horizontal eddy
viscosity or diffusivity coefficient (namelist parameters
which default value are 0.). Nevertheless, the technique
used to compute the isopycnal slopes allows to get rid of
such a background diffusion which introduces spurious
diapycnal diffusion (see §III.6-b).

(4) when an eddy induced advection is used (key_tra-
hdfeiv defined), Aeiv , the eddy induced coefficient has to
be defined. Its space variations are controlled by the same
cpp variable as for the eddy diffusivity coefficient (i.e.
key_trahdfcoef~d defined). The specification of the
space variations of Aeiv  is settle in inihdf.tra.coef~d.h.
The user have to change the include file following his/her
desiderata. For the default option, a constant value, aeiv
(namelist parameter), is used for Aeiv .

(5) the eddy coefficient associated to a biharmonic
operator must be set to a negative value.
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Figure III.5 : averaging procedure for isopycnal slope computation

III.6-b Lateral Tracer Physics
(default option or key_trahdfgeop or key_trahdfiso

and/or key_trahdfeiv or key_trahdfbilap defined)

Three lateral diffusive operators are available in OPA:
harmonic or biharmonic operators, and an eddy induced
advection. Their formulation depends on the direction
along which the lateral diffusive fluxes are evaluated
(model level, geopotential or isopycnal surfaces) and the
type of vertical coordinates used (Table III.2). In all the
cases, a zero eddy fluxes of tracers through closed
boundaries and sea surface is applied using the mask
technique (see §II.1-c).

* harmonic diffusive operator (2nd order) :
In z-coordinates with geopotential diffusion (default

option) or in s-coordinates with diffusion acting along
model level (default option with key_s_coord defined),
the diffusive operator is given by (II.2.18). It is computed
in trahdf.laplacian.h which is included in routine trahdf.F
(see §IV.1-b).

In s-coordinates geopotential or isopycnal diffusion
(key_s_coord  and  key_trahdfgeop  defined or
key_trahdfiso  defined) or in z-coordinates with
isopycnal diffusion (key_trahdfiso  defined), the
diffusive operator is given by (II.2.17). The operator
involves both lateral and vertical derivatives. For
numerical stability, the second order vertical derivative
must be solved using the same implicit time scheme as
those used in the vertical physics (see §II.3-b). Therefore,
the operator computation is split into two files,
trahdf.isoycnal.h and trazdf.isopycnal.h, which solved the
horizontal and vertical components of the operator,
respectively. These files are included in routines trahdf.F
and trazdf.F, respectively (see §IV.1-b). The slopes, r

1

and r
2
, between the surface along which the diffusive

operator acts and the surface of computation (z- or s-
surfaces) are given by:

- Geopotential diffusion in s-coordinates: r
1
 and r

2
 are

the slopes between the geopotential and computational
surfaces. Their discrete formulation is found by locally
vanishing the diffusive fluxes when T is horizontally
uniform, i.e. by replacing in (II.2.17) T by z

T
, the depth

of T-point, and setting zero diffusive fluxes. This leads to
the following expression for the slopes:
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These slopes are computed once in inihdf.F.
- isopycnal diffusion: r

1
 and r

2
 are the slopes between

the isopycnal and geopotential surfaces. In z-coordinates,

their discrete formulation is found by setting that the
diffusive fluxes locally vanish when diffusing ρ instead of
T, i.e. by replacing in (II.2.17) T by ρ and setting zero
diffusive fluxes:
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while in s-coordinates their discrete formulation is found
the sum of the two previous ones.

In fact the isopycnal diffusion is performed along
neutral surfaces, i.e. the gradient of ρ are evaluated at the
same local pressure (which in decibars is approximated by
the depth in meters). Thus in (III.6.2), ρ is the in situ
density and δ

k+1/2
ρ[ ] is replaced by − ρ N g , where N is

evaluated following McDougall [1987] (see §III.4). These
slopes are computed at each time step in hdfslp.F.

This implementation is similar to the one proposed
by Cox [1987], except for the background horizontal
diffusion. Indeed, the Cox implementation of isopycnal
diffusion in GFDL-type models requires a minimum
background horizontal diffusion for numerical stability
reasons. To overcome this problem, several techniques
have been proposed in which the numerical schemes of
the OGCM are modified [Weaver and Eby 1997, Griffies
et al. 1998]. Here, another strategy has been chosen [lazar
et al. 1999, Guilyardi et al. 1999]: a local filtering of
the isopycnal slopes (made on 9 grid-points) prevent the
development of grid point noise generated by the
isopycnal diffusive operator (Fig. III.5). This allows an
isopycnal diffusion scheme without additional background
horizontal mixing (thus referred as "pure" isopycnal
mixing). This technique can be viewed as a diffusive
operator that acts along large scale (2 ∆x) isopycnal
surfaces. The diapycnal diffusion required for numerical
stability is thus minimized and its net effect on the flow
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is quite small when compared to a horizontal background
mixing.

In addition and also for numerical stability reasons,
the slopes are bounded by 1/100 everywhere. This limit
linearly decreasing to zero between 70 meters depth and
the surface (the fact that the eddies "feel" the surface
motivates this flattening of isopycnals near the surface).

* Biharmonic diffusive operator (4th order) :
The biharmonic diffusive operator (key_trahdfbilap

defined) is only available for diffusion along model level
or geopotential surfaces, not along isopycnal surfaces (i.e.
key_trahdfiso must not be defined). This restriction is
due to the fact that an implicit time scheme for the high
order vertical derivatives is not yet available.

In z-coordinates with geopotential diffusion or
diffusion acting along model level in s-coordinates
(default option with key_s_coord  defined), the
biharmonic diffusive operator is obtained by applying
(II.2.18) twice. It is computed in trahdf.bilaplacian.h
which is included in routine trahdf.F  (see §IV.1-b).

In s-coordinates geopotential (key_s_coord and
key_trahdfgeop defined), the biharmonic diffusive
operator is obtained by applying (II.2.17) twice. All the
terms of the operator are computed in trahdf.bilapgeopot.h
which is included in routine trahdf.F (see §IV.1-b). The
slopes used are those between geopotential and s-surfaces
(i.e. Equations (III.6.1) ).

Note that for biharmonic operator an additional
boundary condition is required on the third derivative
normal to the solid boundaries: it is set to zero using the
mask technique.

* Eddy induced advection :
When Gent and McWilliams [1990] diffusion is used

(key_trahdfeiv  defined), an eddy induced tracer
advection term is added, the formulation of which depends
on the slopes of isopycnal surfaces. These slopes are
referenced to the geopotential surfaces, i.e. (III.6.3) is
used in z-coordinates, and (III.6.3) plus (III.6.2) for s-
coordinates. The advection scheme is the same as those
used for the true velocity (§ II.2-b). The eddy induced
velocity is given by:
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where Aeiv  is the eddy induced velocity coefficient set
through aeiv, a namelist parameter. At surface, lateral
and bottom boundaries, the eddy induced velocity and thus
the advective fluxes of heat and salt are set to zero. The
eddy induced advection is computed in the same two
include files as the isopycnal operator, as both have to be
used simultaneously.

III.6-c Lateral Physics on Momentum
(default option or key_dynhdfgeop or

key_dynhdfiso or key_dynhdfbilap defined)

The discrete form of the lateral dynamic diffusive
operator is given by (II.2.19), (II.2.20) or (II.2.21) depen-
ding on the use of z- or s-coordinates and of the direction
along which the diffusion acts. It is written in terms of
curl and divergence components of the horizontal current
when the direction is along model levels and as an
operator applied independently on the two components of
the horizontal velocity for isopycnal diffusion or for
geopotential diffusion in s-coordinates (see §II.2-c).

* harmonic viscous operator (2nd order) :
In z-coordinates with geopotential diffusion (default

option), the diffusive operator is given by (II.2.21). It is
computed in dynhdf.laplacian.h which is included in
routine dynhdf.F  (see §IV.1-b).

In s-coordinates geopotential or isopycnal diffusion
(key_s_coord  and default option for momentum
diffusion or key_dynhdfiso defined) or z-coordinates
with isopycnal diffusion (key_dynhdfiso defined), the
diffusive operator is similar to (II.2.19) applied to each
component of the velocity (cf. Eqs. (II.2.17) ). The
slopes between the surface along which the diffusive
operator acts and the surface of computation (z- or s-
surfaces) are defined at T-, f-, and uw-points for the u-
component, and f- T-, vw-points for the v-component.
They are computed as follows from the slopes used for
tracer diffusion, i.e. (III.6.1) and (III.6.2) :
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The major issue remains in the specification of the
boundary conditions. The choice made consists in keeping
the same boundary conditions as for lateral diffusion
along model level surfaces, i.e. using the shear computed
along the model levels and with no additional friction at
the ocean bottom (see §II.1-c and §III.9).

* Biharmonic viscous operator (4th order):
The biharmonic diffusive operator key_dynhdfbilap

defined) is only available for diffusion along model level
or geopotential surfaces, not along isopycnal surfaces (i.e.
key_dynhdfiso must not be defined). This restriction is
due to the fact that an implicit time scheme for the high
order vertical derivatives is not yet available.

In z-coordinates with geopotential diffusion or
diffusion acting along model level in s-coordinates
(default option with key_s_coord  defined), the
biharmonic diffusive operator is obtained by applying
(II.2.19) or (II.2.20) twice. It is computed in
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dynhdf.bilaplacian.h which is included in routine dynhdf.F
(see §IV.1-b).

In s-coordinates geopotential (key_s_coord and
key_dynhdfgeop defined), the biharmonic diffusive
operator is obtained by applying (II.2.21) twice. All the
terms of the operator are computed in dynhdf.bilap-
geopot.h which is included in routine dynhdf.F (see
§IV.1-b). The slopes used are those between geopotential
and s-surfaces (i.e. (III.6.1) averaged following (III.6.4) ).

Note that for biharmonic operator an additional
boundary condition is required on the third order
derivatives of velocity fields at solid boundaries. The
model currently has this built into the code where the
biharmonic terms are computed. The high order boundary
condition used is analogous to those used for the second
order operator (see §II.1-c).
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III.7  VERTICAL PHYSICS

The discrete form of the ocean subgrid scale physics
have been presented in §II.2-c. At the surface and bottom
boundaries, the turbulent fluxes of momentum, heat and
salt have to be defined. At the surface they are prescribed
from the surface forcing (see §III.4), while at the bottom
they are set to zero for heat and salt, and specified through
a bottom friction parameterization for momentum (see
§III.9). When the ocean is coupled to a sea-ice model, the
temperature surface boundary condition switches from a
Neuman to a Dirichlet boundary condition: the surface
heat flux is no more specified, but diagnosed from the
setting of the freezing temperature at the first ocean level.

In this section we briefly discuss the various choices
offered to compute the vertical eddy coefficients, A

u

vm , A
v

vm

and AvT , defined at uw-, vw- and w-points, respectively
(see §III.1). These coefficients can be assumed to be either
constant, or a function of the local Richardson number, or
computed from a 1.5 turbulent closure model. The
computation of these coefficients is initialized in inizdf.F
and performed in zdfric.F or zdftke.F . The trends due to
the vertical momentum and tracer diffusion, including the
surface forcing, are computed and added to the general
trend in dynzdf.F and trazdf.F, respectively. These trends
can be computed using either a forward time scheme (cpp
variable key_zdfexplicit ) or a backward time scheme
(default option ) depending on the magnitude of the
mixing coefficients used, and thus of the formulation used
(see §II.4).

III.7-a Constant (key_zdfconstant defined)

When the key_zdfconstant cpp variable is defined,
the momentum and tracer vertical eddy coefficients are set

to constant values over the whole ocean. This is the
crudest way to define the vertical ocean physics. It is
recommended to use this option only in process studies,
not in basin scale simulation. Typical values used in this
case are:

A
u

vm = A
u

vm = 10−4 m2s−1

AvT = 10−5 m2s−1

These values are set through a v m 0  and a v t 0
(namelist parameters). In any case, do not use values
smaller that those associated to the molecular viscosity
and diffusivity, that is 10−6 m2s−1  for momentum,
10−7 m2s−1  for temperature and 10−9 m2s−1  for salinity.

III.7-b Richardson Number Dependent
(key_zdfrichardson defined)

When the key_zdfrichardson cpp variable is
defined, a local Richardson number dependent formulation
of the vertical momentum and tracer eddy coefficients is
set. The vertical mixing coefficients are diagnosed from
the large scale variables computed by the model (order 0.5
closure scheme). In situ measurements allow to link
vertical turbulent activity to large scale ocean structures.
The hypothesis of a mixing mainly maintained by the
growth of Kelvin-Helmholtz like instabilities leads to a
dependency between the vertical turbulent eddy
coefficients and the local stratification and vertical shear.
Following Pacanowski and Philander [1981], the
following formulation has been implemented:

AvT =
A

ric

vT

1 + a Ri( )n + A
b

vT  , Avm = AvT

1 + a Ri( ) + A
b

vm (III.7.1)
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where Ri = N 2 ∂U
h

∂z( )2

 is the local Richardson
number, N  is the local brunt-Vaisälä frequency
(see §III.3-b), A

b

vT

,  A
b

vm  are the constant background
values set through avm0 and avt0 (namelist parameter),
and A

ric

vT = 10−4 m2s−1 is the maximum value that can be
reached by the coefficient when Ri ≤ 0 , a = 5  and n = 2 .
The last three variables can be modified by setting avmri,
alp and nric (namelist parameter).

III.7-c 1.5 Turbulent Closure Scheme
(key_zdftke defined)

The vertical eddy viscosity and diffusivity coefficients
are computed from a 1.5 turbulent closure model based on
a prognostic equation for e , the turbulent kinetic energy,
and a closure assumption for the turbulent length scales.
This turbulent closure model has been developed by
Bougeault and Lacarrère [1989] in atmospheric cases,
adapted by Gaspar et al. [1990] for oceanic cases and
embedded in OPA by Blanke and Delecluse [1993] for
equatorial Atlantic simulations. The time evolution of e
is the result* of the production of e  through vertical
shear, its destruction through stratification, its vertical
diffusion and its dissipation of Kolmogorov’ type [1942]:

∂e
∂t

= Avm

e
3

∂u
∂k







2

+ ∂v
∂k







2







 − AvT N 2

+ 1
e

3

∂
∂k

Avm

e
3

∂e
∂k









 − cε

e 3/2

lε

(III.7.2)

Avm = Ck lk e  ,   AvT = Avm Prt (III.7.3)

where N designates the local brunt-Vaisälä frequency (see
§III.3-b), lε and lκ  are the dissipation and mixing
turbulent length scales, P

rt
 is the Prandtl number. The

constants Ck = 0.1  and Cε = 2 2  are designed to deal
with vertical mixing at any depth [Gaspar et al. 1990].
They are set through namelist parameter ediff and ediss.
P

rt
 can be set to unity or, following Blanke and Delecluse

[1993], be a function of the local Richardson number,
R

i
: P

rt
 is equal to 1  for R

i
≤ 0. 2  and equal to 10 for

R
i

≥ 2, with a linear transition in-between. In addition, a
Shapiro filter can be optionally applied to R

i
 in the

horizontal. The choice of P
rt

 is controlled by npdl
(namelist parameter).

For computational efficiency, the original formulation
of the turbulent length scales proposed by Gaspar et al.
[1990] has been simplified. Three formulations are
proposed, the choice of which is controlled by nmxl
(namelist parameter). The first two are based on the
following first order approximation [Blanke and Delecluse
1993]:

l
k

= lε = 2e N (III.7.4)

* Following Blanke and Delecluse [1993], the advective terms have
been neglected. This assumption may be relaxed for eddy resolving
simulations.

which is obtained in a stable stratified region with
constant values of the brunt-Vaisälä frequency. The
resulting turbulent length scale is bounded by the distance
to the surface or to the bottom (nmxl =0) or by the local
vertical scale factor (nmxl =1). Blanke and Delecluse
[1993] notice that this simplification has two major
drawbacks: it has no sense for local unstable stratification
and the computation no longer uses the whole
information contained in the vertical density profile. With
nmxl =3, these drawbacks are overcome by the adjunction
of an additional hypothesis on the vertical gradient of the
computed length scale:

1

e3

∂l

∂k
≤ 1 (III.7.5)

(III.7.5) means that the vertical variations of the length
scale cannot be larger than the variations of depth. It
provides a better approximation of the Gaspar et al.
[1990] formulation while being much less time
consuming. In particular, it allows the length scale to be
limited not only by the distance to the surface or to the
ocean bottom but also by the distance to a strongly strati-
fied portion of the water column such as the thermocline.

At the sea surface the value of e  is prescribed from
the wind stress field: e = ebb τ ρo  ( ebb = 3.75  by
default) with a minimal threshold of emin0 = 10−4 m2 s−2

(namelist parameters). Its bottom value is assumed to
be equal to the value of the level just above. The time
integration of the e  equation may formally lead to
negative values because the numerical scheme does not
ensure the positivity. To overcome this problem, a cut-
off in the minimum value of e  is used. Following
Gaspar et al. [1990], the cut-off value is set to

2 2 10−6 m2 s−2 . This allows the subsequent formu-
lations to match Gargett’s [1984] one for the diffusion in
the thermocline and deep ocean ( AvT = 10−3 N ). In
addition, a cut-off is applied on Avm  and AvT  to avoid
numerical instabilities associated with too weak vertical
diffusion. They must be specified at least larger than the
molecular values, and are set through avm0 and avt0
(namelist parameters).
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III.8  CONVECTION

Static instabilities (i.e. light potential densities under
heavy ones) may occur at particular ocean grid points. In
nature, convective processes quickly re-establish the static
stability of the water column. These processes have been
removed from the model via the hydrostatic assumption:
they must be parameterized. Three parameterisations are
available to deal with convective processes: either a non-
penetrative convective adjustment or an enhanced vertical
diffusion, or/and the use of a turbulent closure scheme.

III.8-a Non-Penetrative Convective
Adjustment (key_convnpc defined)

The non-penetrative convective adjustment algorithm
is used when the key_convnpc cpp variable is defined.
It is applied at each time step and mixes downwards
instantaneously the statically unstable portion of the
water column, but only until the density structure
becomes neutrally stable (i.e. until the mixed portion of
the water column has exactly the density of the water just
below) [Madec et al. 1991a, 1991b]. This algorithm is
an iterative process used in the following way (Fig. III.5):
going from the top of the ocean towards the bottom, the
first instability is searched. Assume in the following that
the instability is located between levels k and k+1. The
two levels are vertically mixed, for potential temperature
and salinity, conserving the heat and salt contents of the
water column. The new density is then computed by a
linear approximation. If the new density profile is still
unstable between levels k+1 and k+2, levels k, k+1 and
k+2  are then mixed. This process is repeated until
stability is established below the level k (the mixing
process can go down to the ocean bottom). The algorithm
is repeated to check if the density profile between level k-
1 and k is unstable and/or if there is no deeper instability.

This algorithm is slightly different from mixing to by
two statically unstable levels. The latter procedure cannot
converge with a finite number of iterations for some ver-
tical profiles while the algorithm used in OPA converges
for any profile in a number of iterations less than the
number of vertical levels. This property is of paramount
importance as pointed out by Killworth [1989]: it avoids
the existence of permanent and unrealistic static
instabilities at the sea surface. This non-penetrative
convective algorithm has been proved successful in
studying the deep water formation in the north-western
Mediterranean Sea [Madec et al. 1991a , 1991b ,
1991c] .

initial profile
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2nd step

1
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Figure III.5 : Example of an unstable density profile treated by the
non penetrative convective adjustment algorithm. 1st step: the initial
profile is checked from the surface to the bottom. It is found to be
unstable between levels 3 and 4. They are mixed. The resulting ρ is
still larger than ρ(5): levels 3 to 5 are mixed. The resulting ρ is still
larger than ρ(6): levels 3 to 6 are mixed. The 1st step ends since the
density profile is then stable below the level 3. 2nd step: the new ρ
profile is checked following the same procedure as in 1st step: levels
2 to 5 are mixed. The new density profile is checked. It is found
stable: end of algorithm.

Note that in this algorithm the potential density
referenced to the sea surface is used to check whether the
density profile is stable or not. Moreover, the mixing in
potential density is assumed to be linear. This assures the
convergence of the algorithm even when the equation of
state is non-linear. Small static instabilities can thus
persist due to cabbeling: they will be treated at the next
time step. Moreover, temperature and salinity, and thus
density, are mixed, but the corresponding velocity fields
remain unchanged. When using a Richardson dependent
eddy viscosity, the mixing of momentum is done through
the vertical diffusion: after a static adjustment, the
Richardson number is zero and thus the eddy viscosity
coefficient is at a maximum. When this algorithm is used
with constant vertical eddy viscosity, spurious solution
can occur as the vertical momentum diffusion remains
small even after a static adjustment. In that latter case, we
recommend to add momentum mixing in a manner that
mimics the mixing in temperature and salinity [Speich,
1992, Speich et al. 1996], or to choose the enhanced
vertical diffusion parameterisation (see next sub-section).
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III.8-b Enhanced Vertical Diffusion
(key_convevd defined)

The enhanced vertical diffusion parameterization is
used when the key_convevd c pp variable is defined. In
this case, the vertical eddy coefficients on both
momentum and tracers are assigned to be very large (a
typical value is 1 m2s−1) in regions where the
stratification is unstable (i.e. when the Brunt-Vaisälä
frequency is negative) [Lazar 1997, Lazar et al. 1998].

In practice, when N 2 ≤ 10−15 , A
T

vT  and the four
neighbouring A

u

vm and A
v

vm  are set to a large value, avevd
(namelist parameter). The default value for avevd is
1 m2s−1 but a ten times larger value can be used. This
parameterization of convective processes is less time
consuming than the convective adjustment algorithm
presented above when mixing both tracers and momentum
in case of static instabilities. It requires the use of an
implicit time stepping on vertical diffusion terms (i.e.
default option , not key_zdfexplicit defined). This is
automatically checked in parctl.F routine.

III.8-c Turbulent Closure Scheme 
(key_zdftke defined)

The turbulent closure scheme presented in §III.7-c
allows to deal with statically unstable density profile. It
is used when the key_zdftke cpp variable is defined. In
such a case, the term of destruction of turbulent kinetic

energy through stratification in (III.7.2) becomes a source
term as N 2  is negative. It results large values of both
A

T

vT  and the four neighbouring A
u

vm and A
v

vm  (up to
1 m s−1) which are able to restore the static stability of the
water column in a way similar to that of the enhanced
vertical diffusion parameterization (§III.8-b).
Nevertheless, the eddy coefficients computed by the
turbulent scheme do usually not exceed 10−2 m s−1  in the
vicinity of the sea surface (first ocean layer) due to the
bound of the turbulent length scale by the distance to the
sea surface (see §III.7-c). It can thus be useful to combine
the enhanced vertical diffusion with the turbulent closure,
i.e. defining key_convevd and key_zdftke c p p
variables all together.
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III.9  BOTTOM FRICTION

Both surface momentum flux (wind stress) and the
bottom momentum flux (bottom friction) enter the
equations as a condition on the vertical diffusive flux. For
the bottom boundary layer, one has:

Avm ∂U
h

∂z( ) = F
h
, (III.9.1)

where F
h
 is supposed to represent the horizontal

momentum flux outside the logarithmic turbulent
boundary layer (thickness of the order of 1 m  in the
ocean). How F

h
 influences the interior depends on the

vertical resolution of the model near the bottom relative
to the Ekman layer depth. For example, in order to obtain
an Ekman layer depth d = 2Avm f = 50 m , one needs a
vertical diffusion coefficient Avm = 0.125 m2s−1 (for a
Coriolis frequency f = 10−4 s−1 ). With a background
diffusion coefficient Avm = 10−4 m2s−1 , the Ekman layer
depth is only 1. 4 m . When the vertical mixing
coefficient is small, using a flux condition is equivalent

to entering the viscous forces (either wind stress or
bottom friction) as a body force over the depth of the top
or bottom model layer. To illustrate this, consider the
equation for u at k, the last ocean level:

∂u( k )

∂t
= 1

e
3u

Avm
( k )

u( k − 1) − u( k )

e
3uw

( k − 1)
− F

u









 ≈ −

F
u

e
3u

(III.9.2)

For example, if the bottom layer thickness is 200 m , the
Ekman transport will be distributed over that depth. On
the other hand, if the vertical resolution is high ( 1 m  or
less) and a turbulent closure model is used, the turbulent
Ekman layer will be represented explicitly by the model.
However, the logarithmic layer is never represented in
current primitive equation model applications: it is
necessary to parameterize the flux F

h
. Two choices are

available in OPA: a linear and a quadratic bottom friction.
Note that in both cases, the rotation between the interior
velocity and the bottom friction is neglected in the
present release of OPA.
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III.9-a Linear Bottom Friction
(namelist : nbotfr = 0, = 1 or = 3)

The linear bottom friction parameterization assumes
that the bottom friction is proportional to the interior
velocity (i.e. the velocity of the last model level):

F
h

= Avm

e
3

∂U
h

∂k
= r U

h

b (III.9.3)

where U
h

b  is the horizontal velocity vector of the bottom
ocean layer and r a friction coefficient in m s−1. This
coefficient is generally estimated by setting a typical
decay time τ in the deep ocean, r = H τ . Commonly
accepted values of τ are of the order of 100 to 200 days
[Weatherly 1984]. A value τ −1 = 10−7 s−1  corresponding
to 115 days is usually used in quasi-geostrophic models.
One may consider the linear friction as an approximation
of quadratic friction, r ≈ 2 C

D
U

av
 [Gill 1982, Eq. 9.6.6].

With a drag coefficient C
D

= 0.002, a typical value of
tidal currents U

av
= 0.1 m s−1, and assuming an ocean

depth H = 4000 m , the resulting friction coefficient is
r = 4 10−4 m s−1. This is the default value used in OPA. It
corresponds to a decay time scale of 115 days. It can be
changed by specifying bfric1 ( namelist parameter).

In the code, the bottom friction is specified by
updating the value of the vertical eddy coefficient at the
bottom level. Indeed, the discrete formulation of (III.9.3)
at the last ocean T-level, using the fact that U

h
= 0  inside

the bottom, leads to
A

u

vm = r e
3uw

A
v

vm = r e
3vw

(III.9.4)

Such an update is done in zdfbfr.F when  nbotfr=1
(namelist parameter) and the value of r used is bfric1 (
namelist  parameter). Setting nbotfr=3  (namelist
parameter) is equivalent to set r = 0  and leads to a free-
slip bottom boundary condition, while setting nbotfr=0
(namelist parameter) imposes r = 2 A

vb

U , where A
vb

U  is
the background vertical eddy coefficient: a no-slip
boundary condition is used. Note that this latter choice
generally leads to an underestimation of the bottom
friction: for a deepest level thickness of 200 m  and
A

vb

U = 10−4 m2s−1 , the friction coefficient is only
r = 10−6 m s−1 .

III.9-b Non-Linear Bottom Friction
(namelist : nbotfr = 2)

The non-linear bottom friction parameterization
assumes that the bottom friction is quadratic:

F
h

= Avm

e
3

∂U
h

∂k
= C

D
u

b

2 + v
b

2 + e
b

U
h

b

(III.9.5)

with U
h

b = u
b
, v

b( )  the horizontal interior velocity (i.e.
the horizontal velocity of the bottom ocean layer), C

D
 a

drag coefficient, and e
b
 a bottom turbulent kinetic energy

due to tides, internal waves breaking and other short time
scale currents. A typical value of the drag coefficient is
C

D
= 10−3 .As an example, the CME experiment uses

C
D

= 10−3  and e
b

= 0 , while the FRAM experiment uses
C

D
= 10−3  and e

b
= 2. 5 10−3 m2s−2 . The FRAM choices

have been set as default value (bfric2  and bfeb2 ,
namelist parameters).

As for the linear case, the bottom friction is specified
in the code by updating the value of the vertical eddy
coefficient at the bottom level:

A
u

vm = C
D

e
3uw

u2 + v
i+1, j( )2

+ e
b







1 2

A
v

vm = C
D

e
3vw

u
i, j+1( )2

+ v2 + e
b







1 2
(III.9.6)

This update is done in zdfbfr.F. The coefficients that
control the strength of the non-linear bottom friction are
initialized as namelist parameters: ( C

D
= bfri2 , and

e
b

= bfeb2).
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Figure III.6: setting of (a) east-west cyclic (b) symmetric across the equator boundary conditions.

III.10  LATERAL MODEL DOMAIN BOUNDARY CONDITIONS

The lateral ocean boundary conditions continuous to
coastlines are Neumann conditions for heat and salt (no
flux across boundaries) and Dirichlet conditions for
momentum (from free- to strong-slip). They are handled
automatically by the mask system (§II.1-c). There are
some minor variations on these at the model domain
boundaries. Four choices are offered: closed, cyclic east-
west, symmetric across the equator, and open boundary
conditions.

III.10-a Closed, Cyclic or Symmetric
Conditions

(jperio = 0, 1, or 2, model parameter)

The choice of closed, cyclic or symmetric model
domain boundary condition is made by setting jperio to 0,
1 or 2 in parameter.h file. Each time such a boundary
condition is needed, it is set by a call to lbc.F  or
mpplnk.F routine depending on the architecture of the
computer used (default option or key_mpp defined). The
computation of momentum and tracer trends proceed from
i = 2 to i = jpi − 1 and from j = 2  to j = jpj − 1. To
choose a lateral model boundary condition is to specify
the first and last rows and columns of the model
variables.

- For closed boundary (jperio=0), solid walls are
imposed at all model boundaries: first and last rows and
columns are set to zero.

- For cyclic east-west boundary (jperio=1), first and
last rows are set to zero (closed) while first column is set
to the value of the before last column and last column to
the value of the second one (Fig. III.6a). Whatever flows
out of the eastern (western) end of the basin enters the
western (eastern) end. Note that there is neither option for
north-south cyclic nor doubly cyclic cases.

- For symmetric boundary condition across the
equator(jperio=2), last rows, and first and last columns are
set to zero (closed). The row of symmetry is chosen to be
the u- and T-points equator line ( j = 2 , i.e. at the
southern end of the domain). For arrays defined at u- or T-
points, the first row is set to the value of the third row
while for most of v- and f-points arrays (v, ζ , ψ , but
scalar arrays such as eddy coefficients) the first row is set
to minus the value of the second row (Fig. III.6-b). Note
that this boundary condition is not yet available on
massively parallel computer (key_mpp defined).

III.10-b Open Boundary Conditions
(key_eastobc, and/or key_westobc, and/or

key_northobc, and/or key_southobc defined)

Not available in release 8.1, but already implemented
in the 8.2 beta release for CLIPPER project.
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III.11  ANNEXE FUNCTIONALITIES

III.11-a Internal Restoring Term on T-S
Fields (key_tradmp defined)

In some applications it can be useful to add a
Newtonian damping term in the temperature and salinity
equations :

  

∂T

∂t
= L − γ T − To( )

∂S

∂t
= L − γ S − So( )

(III.11.1)

where γ  is the inverse of a time scale, and T
o
 and S

o
 are

given temperature and salinity fields. The restoring term
is added if the key_tradmp cpp variable is defined. It
requires that both cpp variables key_temdta a n d
key_saldta are defined (i.e. that T

o
 and S

o
 are read). The

restoring coefficient γ  is a three-dimensional array
initialized by the user in dtacof.F. The additional damping
term is added in tradmp.F.

The two main cases in which (III.11.1) is used are (1)
the specification of the boundary conditions along
artificial walls of a limited domain basin and (2) the
computation of the velocity field associated with a given
T-S field (for example to build the initial state of a
prognostic simulation, or to use the resulting velocity
field for a passive tracer study). In the first case, regional
models usually have artificial walls instead of open
boundaries. In the vicinity of these walls, γ  takes large
values (equivalent to a few day time scale) whereas it is
zero in the interior of the model domain. The second case
corresponds to the use of the robust diagnostic method
[Sarmiento and Bryan 1982]. It allows to find the velocity
field consistent with the model dynamics while having a
T-S field close to a given climatology field ( T

o
 - S

o
). The

time scale associated with γ  is generally not a constant
but spatially varying in order to respect some
considerations. For example, it is usually set to zero in
the mixed layer (defined either on a density or AvT

criterion) [Madec and Imbard 1996] and in the equatorial
region [Reverdin et al. 1991, Fujio and Imasato 1991,
Marti 1992] as those two regions have a small time
scale of adjustment, while smaller γ  are used in the deep
ocean where the typical time scale is long [Sarmiento and
Bryan 1982]. In addition it is reduced (and even zero)
along the western boundary to allow the model to
reconstruct its own western boundary structure in
equilibrium with its physics. The choice of a Newtonian
damping acting in the mixed layer or not is controlled by
nmldmp (namelist parameter).

The robust diagnostic method is very efficient to
prevent the temperature drift in intermediate waters but it

produces artificial sources of heat and salt within the
ocean. It has also undesirable effects on the ocean
convection. It tends to prevent deep convection and
subsequent deep water formation by stabilising too much
the water columns.

III.11-b Accelerating the Convergence
(nacc = 1,namelist parameter)

Searching an equilibrium state with an ocean model
requires very long time integration (a few thousand years
for a global model). Due to the size of the time step
required for numerical stability consideration (less than a
few hours), this is usually quite expensive even on a
super-computer and requires a large elapse time. In order
overcome this problem, Bryan [1984] introduces a
technique which allows to accelerate the spin up to the
equilibrium. The technique basically consists in using a
larger time step in the thermodynamic evolution
equations than in the dynamic evolution equations. It does
not affect the equilibrium solution but modifies the
trajectory to reach it.

The acceleration of convergence is used when nacc=1
(namelist parameter) while synchroneous time stepping
is achieved when nacc=0. In that case, ∆t = rdt  is the
time step of dynamics while ∆t̃ = rdttra  is the tracer
time step. Both are settled from namelist parameters.
The set of prognostic equations to solve becomes :

  

∂U
h

∂t
≡

U
h

t+1 − U
h

t−1

2∆t
= K

  

∂T

∂t
≡ T t+1 − T t−1

2∆t̃
= K (III.11.2)

  

∂S

∂t
≡ St+1 − St−1

2∆t̃
= K

Bryan [1984] has analysed the consequences of this
distorted physics. Free waves have a slower phase speed,
their meridional structure is slightly modified, and the
growth rate of baroclinically unstable waves is reduced
but there is a wider range of instability. This technique is
efficient for searching an equilibrium state in coarse
resolution models. However its application is not suitable
for many oceanic problems: it cannot be used for transient
or time evolving problems (in particular, it is very
questionable to keep this technique when studying a mean
seasonal cycle), and it cannot be used in high resolution
models where baroclinically unstable processes are
important. Moreover, the vertical variation of ∆t̃  implies
that the heat and salt contents are no more conserved due
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to the vertical coupling of the ocean level through both
advection and diffusion.

III.11-c Zoom Functionality
(nizoom, njzoom , namelist parameters)

The zoom option offered in OPA is a quite simple
function that allows to perform a simulation over a sub-
domain of an already defined configuration (i.e. without
defining a new set of mesh, initial state and forcings).
This option can be useful for testing the user setting of
surface boundary conditions, or the initial ocean state of a
huge ocean model configuration while having a small in
core memory requirement. It can also be used to easily
test specific physics in a sub-domain (for example, test of
the coupling between sea-ice and ocean models over the
Arctic or Antarctic ocean as it is set in the global ocean
configuration [Madec and Imbard 1996]). In standard, this
option does not include any specific treatment for ocean
boundaries of the sub-domain: they are considered as
artificial vertical walls. Nevertheless, it is quite easy to
add a restoring term toward a climatology in the vicinity
of those boundaries (see §III.11-a).

In order to easily define a sub-domain over which the
computation can be performed, the dimension of all input
arrays (ocean mesh, bathymetry, forcing, initial state, ...)
are defined as jpidta, jpjdta and jpkdta (parameter.h), while
the computational domain is defined through jpiglo,
jpjglo and jpk (parameter.h). When running the model
over the whole configuration, the user set jpiglo=jpidta
jpjglo=jpjdta and jpk=jpkdta. When running the model
over a sub-domain, the user have to provide the size of
the sub-domain, (jpiglo, jpjglo, jpk) in the parameter.h
file, and the indices of the south western corner as nizoom
and njzoom  (namelist parameters) (Fig. III.7).

Note that a third set of dimension exist, jpi, jpj and
jpk which is actually used to perform the computation. It
is set by default to jpi=jpjglo and jpj=jpjglo, except for
massively parallel computing where the computational
domain is laid out on local processor memories following
a 2D horizontal splitting (see §IV.2-c)

j p jd ta

n jzoom

nizoom jp id ta

jpiglo

model
domain

data input
domain

jpjglo

1

1

Figure III.7 : position of a model domain compared to the data input
domain when the zoom functionality is used.
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III.12  DIAGNOSTICS

III.12-a Standard Model Output
(default option or key_diainstant defined)

The model outputs are of three types: the restart file,
the output listing, and the output file(s). The restart file
is used internally by the code when the user wants to start
the model with initial conditions defined by a previous
simulation. It contains all the information that is
necessary not to introduce changes in the model results
(even at the computer precision) between a run performed
with several restarts and the same run performed in one
time. It has to be noticed that this requires that the restart
file contains two consecutive time steps for all the
prognostic variables, and that it is save in the same
binary format as the one used by the computer to

calculate (in particular, 32 bits binary IEEE format for
this file must not be used). The output listing and file(s)
are defined but should be checked and eventually adapted
to the user's needs. The output listing is stored in the
ocean.output file. The information are printed all the way
through the code on the logical unit numout. To locate
these prints, use the UNIX command ' grep -i numout * '
in the source code directory.

In the standard configuration, the user will find the
model results in two output files for every time-step
where output is demanded: a VO file containing all the
three dimensional fields in logical unit numwvo, and a
SO file containing all the two dimensional (horizontal)
fields in logical unit numwso. These outputs are defined
in the diawri.F routine. The standard and available on-line
diagnostics are described in §III-12-c.
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The default output is 32 bits binary IEEE format,
compatible with the Vairmer software (see the Climate
Modelling and global Change team WEB server at
CERFACS: http://www.cerfacs.fr).  The model’s
reference directory also contains a visualisation tool based
on NCAR Graphics (http://ngwww.ucar.edu). If a user
has access to the NCAR software, he or she can copy the
LODMODEL/UTILS/OPADRA directory from the
reference and, following the README , create the
graphic outputs from the model’s results.

III.12-b Tracer/Dynamics Trends
(key_diatrddyn or key_diatrdtra defined)

When key_diatrddyn and/or key_diatrddyn cpp
variables are defined, each trends of the dynamics and/or
temperature and salinity time evolution equations are
stored in three-dimensional arrays just after their
computation (i.e. at the end of each dynL. F  and/or
traL. F  routines). These trends are then used in
diagnostic routines diadyn.F and diatra.F respectively. In
standard, these routines check the basin averaged
properties of the momentum and tracer equations every
ntrd  time-steps (namelist parameter). These routines are
given as an example, they must be adapted by the user to
his/her desiderata.

These two options imply the definition of several
arrays in the in core memory, increasing quite sensitively
the in core memory requirements (search for
key_diatrddyn or key_diatrdtra in common.h file)

III.12-c Other Diagnostics

Aside from the standard model variables, some other
diagnostics are computed on-line or can be added in the
model. The available ready-to-add diagnostics can be found
in the reference directory (see §IV.3) in
LODMODEL/UTILS/OPADIAGS . Among the
available diagnostics one can quote:

- the mixed layer depth (based on a density criterion)
(diamxl.F)

- the turbocline depth (based on a turbulent mixing
coefficient criterion) (diamxl.F)

- the depth of the 20°C isotherm (diahth.F)
- the depth of the thermocline (maximum of the

vertical temperature gradient) (diahth.F)
- the meridional heat and salt transports and their

decomposition (diaznl.F)
- the surface pressure (diaspr.F)
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IV.  COMPUTER CODE

IV.1  CODE ARCHITECTURE

The computer code has been developed as a research
tool. Users are scientists who intend to produce and
analyse ocean simulations in various configurations
usually requiring a huge amout of computation, and
possibly modify the numerical model in order to better
represent the ocean physics or dynamics. Therefore, the
code must be easy to understand and to modify by non
specialists in computer science, although it is run on
various sophisticated and powerful computers
(vectorial/scalar weakly/massively parallel computers). In
order to achieve this goal, the computer code has been
written to be first readable and modular, and second as fast
as possible on quite different computers while keeping the
first principle.

IV.1-a A i m s

- readability/modularity: The code is written in
standard FORTRAN 77 with a few FORTRAN 9 0
extensions. Special coding tricks are avoided. It is on-line
documented (about 16,300 of the 28,400 model lines are
comment lines) as well as off-line documented through
the present manual. Each subroutine has its own header
that can be easily extracted using the standard UNIX grep
command (see Appendix D). Details of coding rules are
presented in Appendix D. The code is composed of 130
routines. Each routine is small (usually less than 200
FORTRAN lines, including comments) and well defined
(i.e. dedicated to one specific function). All the FORTRAN
declarations of arrays, parameters, statement functions
used in more than one routine are collected in three files,
common.h, parameter.h and stafun.h. These files are
included in all the routines (see §IV.3). This allows more
readability and more security: all the arrays appear at the
same place, with a fixed amount of memory used; the
statement functions are always properly placed (i.e. just
before the first FORTRAN  instruction). For clarity and
modularity, the various computations done by the code
are ordered as the terms of the physical equations to be
solved. As a consequence, when modifying a physical
process or of a discretization of one specific term, only
one small routine is often to be changed (see §IV.1-b)

- portability/performance: No computer specific
coding has been introduced except for parallelization (see

§IV.1-c) and Input/Output (thereafter I/O) (see §III.12-a).
The code is intended to run on any computer having
enough memory and CPU power, and words of 64 bits or
more. It is presently used for several benchmarks on
super-computers. It is optimized for vectorial processing,
weak and massive parallel processing while keeping its
readability (i.e. readability always prevails over
performances) (see §IV.2). Note that the minimum of 64
bits words is really required. A recent analysis of the code
using CADNA software [Jézéquel and Chesneaux, 1998]
have shown that the lost of significant digits during a
time-step computation is large enough to loose the
physical meaning when using 32 bits words.

IV.1-b Flow Chart

The goal of the OPA numerical model is to compute a
solution for the equations described in section I in a
chosen space and time configuration. For that purpose,
the code contains two parts. The first one is the
initialisation phase. It is run once at the beginning of a
numerical experiment, and ensures:

- physical and numerical parameter initialization.
- space and time domain definition: mesh, bathymetry,

land points and time step setting.
- initialization for the surface pressure gradient

computation, including islands.
- surface forcing initialization: wind stress, heat and

fresh water fluxes.
- external temperature and salinity data input if

necessary.
- definition of mixing coefficients, Newtonian

damping coefficients, if necessary.
- dynamics and tracers initialization.

The second part is the time stepping. It starts at end of
the initialization phase, as everything is ready to start for
the time loop. It ensures :

- update of surface forcing and data
- update of ocean physics
- tracer and dynamics trends computation
- time stepping of prognostic variable (u, v, T, S)
- diagnostic variable computation ( ρ, N 2 , χ,ζ , w )
- diagnostics and/or output
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model - main program

opa - main routine

First part : model settings
inipar -  initialisation : model and file parameters

parcst - parameters: constants
parlec -  parameters: lecture of namelist
parctl -  parameters: control and monitoring of model options

ctlopn -  control: open file and check
inimpp - initialisation: subdomains massively parallel processors
inidom -  initialisation: domain

dommba -  domain: read the integer bathymetry array (mbathy)
dommsk -  domain: masks
domhgr -  domain: horizontal grid

hgrcoo - read the horizontal grid coordinate file
domzgr -  domain: vertical ( z ) grid
domstp -  domain: time-steps initialization

in ispg -  initialisation: surface pressure gradient
bsfmat -  barotropic stream function: matrix
is ldom -  island: domain check

is lpri - island: print
i s lpth -  island: path around

i s lbs f - island: barotropic stream function
bsfpcg - barotropic stream function preconjugate gradient solver

is lmat - island: matrix
inidta -  initialisation: data fields (tracers and/or velocity)

dtatem -  data: lecture of temperature fields
dtasal -  data: lecture of salinity fields
dtacof -  data: restoring coefficients

inidtr -  initialisation: dynamics and tracers
dtrlec -  dynamics and tracers: lecture and initialization
dtrtem -  dynamics and tracers: temperature initialization
dtrsal -  dynamics and tracers: salinity initialization
e o s -  equation of state: in-situ density
bn2 -  Brunt-Vaïsälä frequency N2

prh -  hydrostatic pressure
wzv -  w: vertical (z) velocity

in i ice - initialisation: ice model
initrc - initialisation: passive tracers model
inihdf -  initialisation: horizontal diffusive coefficients
inizdf -  initialisation: vertical (z) diffusive coefficients
inicmo -  initialisation: coupled models

mlbxinit - task initialisation (macro-tasking option)
tskstart - call of step (macro-tasking option)

Second part : time stepping
step - time stepping loop

Update forcing and data
day -  model calandar (day)
tau -  wind stress (tau)
f l x -  surface fluxes (heat and fresh water fluxes)
dtasst -  data: lecture of sea surface temperature fields
dtatem -  data: lecture of temperature fields
dtasal -  data: lecture of salinity fields
diawri -  diagnostic: write the standard output of opa at the first time step

Table IV.1 : model flow trace
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Update ocean physics
zdftke -  vertical (z) diffusion: tke (1.5 turbulent closur scheme)
zdfric -  vertical (z) diffusion: Ricihardson number dependent coef.
zdfevd -  vertical (z) diffusion: convection, enhanced vertical diffusion
zdfbfr -  vertical (z) diffusion: bottom friction
hdfslp -  horizontal diffusion: slope of the direction of lateral diffusion

Active tracer trends
trahad -  tracer: horizontal advection
trahdf -  tracer: horizontal diffusion
tradmp -  tracer: newtonian damping
trazad -  tracer: vertical (z) advection
traqsr -  tracer: penetrative solar radiation qsr
trazdf -  tracer: vertical diffusion

Sea-Ice and Passive tracer models
icestp - ice: first time stepping routine (1)
iptrstp - passive tracer model: time stepping

Dynamics trends
dynkeg -  dynamics: horizontal gradient of kinetic energy trend
dynvor -  dynamics: vorticity term (including Coriolis term)
dynhdf -  dynamics: horizontal diffusion trend
dynhpg -  dynamics: horizontal pressure gradient trend
dynzad -  dynamics: vertical (z) advection trend
dynzdf -  dynamics: vertical (z) diffusion trend
dynspg -  dynamics: surface pressure gradient

bsfpcg - barotropic stream function preconjugate gradient solver
bsfsor - barotropic stream function su. over relax.

Active tracer and dynamics time stepping
tranxt -  tracer: tracer fields at next time step
tranpc -  tracer: non-penetrative convective mixing

e o s -  equation of state: in-situ density
bn2 -  Brunt-Vaïsälä frequency N2

dynnxt -  dynamics: horizontal velocity fields at next time step
Diagnostic variables tracer and dynamics time stepping

e o s -  equation of state: in-situ density
bn2 -  Brünt-Vaïsala frequency N2

div -  divergence of the horizontal velocity
cur -  relative vorticity ( curl )
wzv -  w: vertical (z) velocity

Outputs and diagnostics
stpctl -  step: control of the simulation
diawri - diagnostic: write the standard output of opa
rstwri - restart: write the standard restart file of opa
icedia - ice: diagnostic and outputs
ptrdia - passive tracer model: diagnostic and outputs
stpcpl - coupler: send SST and sea-ice extend

end
tskwait - task  get back (multitasking option)
mppstop - stop and close (mpp option)

Table IV.1 : continued
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The time loop stops at the last time step (specified in the
namelist file) and the model stops after the creation of a
restart file.

The code is organized in small routines which are
devoted to one task only. For example, in the time loop
integration, each subroutine computes only one trend
term of dynamics or tracer equations. Each routine name
is formed by three or six letters except for main programs
(model.F and step.F) or computer dependant routines
(macro-tasking or MPP routines, matrix computations,
more than 6). These names are formed of two mnemonic
root names of three letters. Main keys are :

- ini initialization
- dom domain
- dyn, tra dynamics, tracer
- tem, sal temperature, salinity
- dta data
- had, zad horizontal, vertical (z) advection
- hdf, zdf horizontal, vertical (z) diffusion
- spg, hpg surface, hydrostatic pressure gradient
- so l elliptic solver
- bsf barotropic streamfunction
- i s l island
- ctl control
- ...

The model flow chart is given in table IV.1. Some
routines are not listed in this flow chart. They concern:
- array printings in the output listing: prihre.F, prihin.F,
prizre.F (print an horizontal or vertical (z) real or
integer array), islpri.F (print island information);
- I/O routines: wrivr2.F, wrivr3.F (write Vairmer 2D
and 3D file, respectively), read2.F, read3.F, write2.F,
write3.F.
- macro-tasking synchronisation : forkjoin.F.
- the setting of model domain lateral boundary conditions
: lbc.F.
- exchange or sum of data when using the massively
parallel option : mppsend.F, mpprecv.F  (send and
receive data to neighbouring processors in massively
parallel processors computation), and also mppsum.F,
mppgather.F, mppscatter.F, mppsync.F, mynode.F.

Although these routines are not important for the
general understanding of the code, they are very important
if a user wants to modify the code structure since they
synchronize the computation when using more than one
processor (i.e. when key_monotasking is not defined
or key_mpp is defined, see §IV.2).

IV.2  PERFORMANCE — PORTABILITY

Due to the large number of horizontal grid points and
the increasing time of integration, the limitation of
computer time is a severe restriction on numerical ocean
simulations. Therefore numerical experiments must be
performed on the fastest available machines. Today two
types of powerful computers coexist: (1) supercomputers
(one or a few vectorial processors which access to a shared
memory), (2) massively parallel computers (some ten or
hundred scalar or vectorial processors, each processor
having its own local memory). The present release of
OPA can be run on these two types of computers, and is
optimized for vectorial processors.

IV.2-a Vectorization

Supercomputers achieve great performances thanks to
the architecture of their processors. Their fast speed is the
result of their processors being able to compute on long
chains of variables (vectors), as on an assembly line.
Some care is taken in the code programming to ensure
that the machine will be able to recognize long vectors
(some tens to hundreds of numbers) to speed-up the

calculation. This is called vectorization. The vectorization
is implemented in a classical way, respecting the general
requirement for vector computers. For instance, the use of
IF-testing within DO loops is avoided, since it often
prevents fast arithmetic processing, and the inner loop
index is (as far as possible) the leftmost argument in order
to use the parallel reading of the core memory.

On Cray computers, several routines are available to
optimize vector computation of specific operations. Only
a few of them are used in OPA: sdot (dot product), cvmgp
(comparison of two vector elements to construct a third
one), folr  (first order recurrence, see §III.5), ...
Their FORTRAN equivalent code is available in
LODMODEL/SRC_AUX directory (see §IV.3) and can be
used to run the code on non-Cray computers.

The vectorization speed up rate of OPA (i.e. the ratio
between vector and no vector computation CPU time) is
between 10 and 17, depending on the size of the model
domain (larger values of jpi usually produce greater speed
up). Note that since the code is optimised for vector
processors, it is not fully optimized for scalar ones (such
as those used today on Cray T3D and T3E massively
parallel computers).
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Figure IV.1 distribution of j- and k-slabs on three processors A, B, and C

IV.2-b Weak Parallelism
(default option , inhibited if key_mpp

or key_monotasking is defined)

Supercomputers generally have a few CPUs which
access to a shared memory. The use in parallel (i.e. at the
same time) of a few CPUs to speed up a simulation by
decreasing the overall elapse time is called multitasking
(or weak parallelism). The FORTRAN  compiler now
available on such computers can generaly recognize the
intrinsic parallelism of a FORTRAN  code (autotasking
option of the compiler). It distributes each do-loop
instruction on the free processors. Nevertheless, we have
chosen to maintain the algorithmic and programming
efforts made by Andrich et al. [1988a, 1988b] to take
advantage of a weakly parallel computers. It basically
consists in distributing large portions of the computer
code on each processor (macrotasking). Such multitasking
computation is active by default, and removed if either
key_monotasking or  key_mpp cpp variable is
defined. Note that weak parallelism slightly increases the
total CPU time of an experiment. The benefit of its use
thus depends on the computer center policy and on the
attention devoted to the elapse time. Usually, the macro-
tasking option is advised when the model configuration
requires half or more of the shared memory.

The computer code has been macrotasked in an
operator oriented way: the macrotasking is implemented
in a different way for each of the integro-differential
operators of the equations, using a data partition
technique. Each term of the model equation is distributed
on the available processor in a way that depends on its

nature. Usually, horizontal trends are computed on k-slabs
(i.e. (i, j)  plane), vertical ones are computed on j-slabs
(i.e. (i, k)  plane) while two dimensional ones are
computed on j-lines (Fig. IV.1). In all cases, the inner do
loop remains the i-index which allows a better efficiency
for vectorization. Synchronization points are generally
required between each type of distribution.

The implementation is rather easy due to the structure
of the computer code. Each term of the model equations is
associated with a specific routine and called by one
routine (step.F). Therefore, most of the synchronization
points have to be settled in this routine (Table IV.2).
Nevertheless, a few routines require internal synchroni-
zations as they include horizontal and vertical operator,
namely zdftke.F, tranpc.F, dynspg.F , and trahdf.F or
dynhdf.F (when a rotated biharmonic lateral diffusive
tensor is used). In particular, dynspg.F solves an elliptic
equation either with a successive over-relaxation or a
conjugate gradient method (§III.5). The former is only
partly parallelized while the latter is fully parallelized
following Oppe and Kincaid [1987].

Each synchronisation point used during the macro-
tasked computation is made with a call to the forkjoin.F
routine: the first processor which enters this routine
establishes a barrier which stops the other processors.
When all the processors have entered this routine, the
barrier is opened so that all the processors can resume the
execution of the code. forkjoin.F contains a single
instruction, a call to a computer specific routine which
ensure the synhronization described above. In standard, the
routine called is barsync, a Cray computer library routine.
When another weakly parallel super-computer is used,
only the call to barsync in forkjoin.F should be changed.
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The code remains easy to understand as the macro-
tasking is rather transparent to the user. In particular, the
portions of the computer code that the user generally
must modify for a specific application (i.e. the
initialization phase, and the surface forcing, data updating,
diagnostics and outputs at each time step) have been kept
on one processor in order to simplify user's work, even if
this leads to a slight lost of elapse time speed up.

forcing and data updating:
stpday, tau, flx, — ONE processor
dtatem, dtasal, dtasst

ocean physics:
zdftke k- and j-slabs

(with synchronization points)

zdfbfr j-slabs
hdfslp k-slabs

tracer trends:
trahad, tradmp, trahdf k-slabs
trazad, traqsr, trazdf j-slabs

dynamics trends:
dynkeg, dynvor, dynhdf k-slabs
dynhpg, dynzad, dynzdf j-slabs
dynspg j-lines

(with synchronization points)

time stepping
tranxt k-slabs
dynnxt k-slabs

diagnostic variables:
eos, bn2, div, cur k-slabs
wzv j-slabs

control, outputs, diagnostics:
stpctl, diawri, rstwri — ONE processor

Table IV.2 : Synchronization points and type of distribution over the
processors used in macro-tasking option for the time stepping routine
(step.F). Note that the example is for the most commonly use cpp
options, i.e. default option + key_zdftke + key_flxqsr.

IV.2-c Massive Parallelism (key_mpp defined)

The traditional vector supercomputers seem to
approach their technological limits in term of speed and
memory. The Massively Parallel Processor (MPP)
computers, characterized by a large number of processors
and a communication network, are likely to be a way to
reach teraflops speed and teraoctet central memory. For
this reason, many meteorological or oceanological centres
and laboratories have adapted their general ocean
circulation models for MPP architecture [Bleck et al.
1995, Guyon 1995, Webb 1996, Beare and Stevens
1997, Guyon et al. 1999].

A first attempt for using OPA model on massively
parallel machine was performed in 1993 on a CM2
Connection Machine, i.e. onto a SIMD machine ( Single
Instruction Multiple Data - all the processors execute the
same computation at the same time and all the data stored
in the global memory are available for each processor).
This adaptation of the code has been realized through a

collaboration of CEA, LMCE and LODYC [Vittart
1993], using a specific language, CMFortran, which
introduces statements and functions for distributing or
accessing the shared data. Many code lines were rewritten,
especially the array dimension and do loop, in order to
obtain a reasonable efficiency. All the code was adapted
except the surface pressure gradient computation.

Since then, SIMD machines were substituted by
MIMD machines (Multiple Instruction Multiple Data),
another approach was chosen: a domain decomposition
method. The basis of the method consists in splitting the
large computation domain of a numerical experiment into
several smaller domains and solving the set of equations
by addressing independent local problems. Each processor
has its own local memory and computes the model
equation over a sub-domain of the whole model domain.
The sub-domain boundary conditions are specified through
communications between processors which are explicitly
organized by specific statements (message passing
method). Advantages are that there is not many modifi-
cations of the initial FORTRAN  code. For the modeller’s
point of view, each sub-domain running on a processor is
identical as the old mono-domain code. In addition, the
programmer manages the communications between sub-
domain, and the code presents more scalability when the
number of processors is increased. The porting of OPA
code on an iPSC860 was achieved during Guyon’s PhD
[Guyon et al. 1994a , 1994b] in collaboration with
CETIIS and ONERA. The implementation in the
operational context and the studies of performances on a
T3D and T3E Cray computers have been made in
collaboration between IDRIS and LODYC. The present
implementation is largely inspired from Guyon's work
[Guyon 1995, Guyon et al. 1999].

As for the macro-tasking technique, the parallelization
strategy is defined by the physical characteristics of the
ocean model. Second order finite difference schemes leads
to local discrete operators that depend at the very most on
one neighbouring point. The only non-local
computations concerne the vertical physics (i.e. implicit
diffusion, 1.5 turbulent closure scheme, ...) which
involves the whole water column, and the solving of the
elliptic equation associated with the surface pressure
gradient computation which involves the whole
horizontal domain. Therefore, a pencil strategy is used for
the data sub-structuration: the 3D initial domain is laid
out on local processor memories following a 2D
horizontal topological splitting. Each sub-domain
computes its own surface and bottom boundary
conditions. It has a side wall overlapping interface which
stocks lateral boundary conditions for computations in the
inner sub-domain. The overlapping area is reduced to one
row. After a computation, a communication phase starts:
each processor sends to its neighbouring processors the
update values of the point corresponding to the
overlapping area of its neighbouring sub-domain. The
communication is done through message passing.
Usually the parallel virtual language, PVM, is used as it
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Figure IV.3: example of a domain splitting with 9 processors and no
east-west cyclic boundary conditions.

is a standard language available on nearly all MPP
computers. More specific languages (i.e. computer
dependant ones) can be easily used to speed up the
communication, such as SHMEM on the Cray T3E
computer. The data exchanges between processors are
required at the very place where lateral domain boundary
conditions are set in the mono-domain computation
(§III.10-c): the lbc.F routine which manages such
conditions is substituted by mpplnk.F or mpplnk2.F
routine when running on MPP computer (key_mpp
defined). It has to be noticed that when using MPP
version of the model, the east-west cyclic boundary
condition is implicitly done, while the south-symmetric
boundary condition option is not available.

In the standard version of the OPA model, the
splitting is regular and arithmetic. the i-axis is divided by
jpni and the j-axis by jpnj for a number of jpni × jpnj
processors (model parameter set in parameter.h). Each
processor is independent. Thus, without message passing
or synchronous process, programs run alone and only
access to its own local memory. For this reason, the
main model dimensions are now the local dimensions of
the subdomain (pencil) that are noted jpi, jpj, jpk. These
dimensions include the internal domain and the
overlapping rows. The number of overlapping rows is
usually set to one (jpreci=1, in parameter.h). The whole
domain dimensions are named jpiglo, jpjglo and jpk (see

§III.12). The relationship between the whole domain and
a sub-domain is for the abscisses :

jpi = ( jpiglo -  2 × jpreci + jpni - 1) jpni + 2 × jpreci

where jpni is the number of processors along the i-axis.
One defines also variables nldi and nlei which

correspond to the internal domain bounds, and the variable
nimpp, njmpp, the global position of the (1,1) gridpoint,
i.e. an element of Tl , a local array (sub-domain), corres-
ponds to an element of Tg , a global array (whole domain),
by the relationship:

Tg (i + nimpp − 1 , j + nlmpp − 1 , k ) = Tl (i , j , k )

with 1 ≤ i ≤ jpi , 1 ≤ j ≤ jpj , and 1 ≤ k ≤ jpk .

The processors are numbered from 0  to
jpni × jpnj − 1 . This number is saved in the variable

nproc. In the standard version, a processor has no more
than four neighbouring processors named nono (for
north), noea (east), noso (south) and nowe (west) and two
variables, nbondi and nbondj, indicate the situation of the
processor (see Fig.IV.3). For example, nbondi  can take
the following values depending on the existence of east
and/or west processors:

nbondi = -1 an east neighbour, no west processor,
nbondi =  0 an east neighbour, a west neighbour,
nbondi =  1 no east processor, a west neighbour,
nbondi =  2 no splitting following the i-axis.

During a simulation, the processors exchange data
with their neighbours. If there is effectively a neighbour,
a processor receives variables from this processor on its
overlapping row, and sends the data issued from internal
domain corresponding to the overlapping row of it (Fig.
IV.4).

As lands usually occupy a non-negligible portion of a
model domain, it often happens that at least one sub-
domain contains only land grid points. In the standard
case, the computation is still done on this processor, but
with the use of the mask technique (see III.1-c) all the



62 IV.   COMPUTER CODE

Figure IV.4: Pencil splitting with the additional outer halos.

(a) (b)

Figure IV.5: Example of the Atlantic domain defined for the CLIPPER experiments. The iitial grid is composed of 773 x 1236 horizontal points. (a)
the domain is split onto 9 x 20 subdomains (jpni=9, jpnj=20). 52 subdomains are land areas. (b) 52 subdomains are eliminated (white rectangles)
and the resulting number of processors really used during the computation is jpnij=128.

variables remain zero on the associated sub-domain. An
alternative is to not consider the land-only processors, and
thus only use a number of processors equal to the number
of sub-domains that contain ocean grid-points. For that
purpose, a pre-processing tool has been developped.
This tool (mpp_optimiz.f which can be found in
LODMODEL/SRC_AUX/AUX_OPA directory) works as
follows:

The user provides a maximum number of processors
to use, the size of the model domain (jpiglo, jpjglo, jpk),
the bathymetry file which defines the model domain, and
the size of the in core memory of the mpp computer
processors (let say for example, 180 processors,
jpiglo=773, jpjglo=1236, jpk=42, for the 1/6° Atlantic
domain (Fig. IV.5) on a T3D for which each processor
has 16 Mw of in core memory). The tool search all the
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domain decompositions that respect the in core memory
size of the local processors and class them by decreasing
number of land only processors. The user chooses one
decomposition, let say a splitting in 9 by 20 in the i- and
j-direction which has 52 land-only sub-domains (Fig.
IV.5). Then, he indicates in the parameter.h file the
chosen cutting along i- and j-axes (jpni and jpnj values)
and the number of ocean processors (jpnij < jpni xjpnj).
Each processor name and neighbour parameters (nbound,
nono, noea,...) are modified by an algorithm in the
inimpp2.F  so that the model will be run on jpni j
processor only, not on jpnixjpnj processors.

IV.2-d Code Requirements and Performances

The OPA model needs to be run on a computer with
at least 64-bit words in order to get the necessary
numerical precision. Otherwise the truncature error
becomes unacceptably large (especially in the implicit
resolution of vertical diffusion terms and pressure gradient
terms).

In terms of memory, given the size of the grid (i.e.
the number of longitude points jpi, the number of latitude
points jpj and the number of depth levels jpk), a rough
estimation of the requested memory will be :

Memory needed = 55 jpi× jpj × jpk( )+73 jpi× jpj( )  words

or 8 times more if you want the result in bytes). This
memory request will change as soon as you add or sup-
press arrays in the code.

In terms of CPU, it will strongly depend on the
amount and efficiency of the diagnostics used, but a rough
estimation would be: for a rectangular oceanic box with
very few diagnostics : 1.82 10−6  seconds per time-step
and grid point on a CRAY C90 ; for a real experiment
with some diagnostics: 2.13 10−6  seconds per time-step
and grid point on a CRAY C90, which corresponds to a
390 Mflops performance.

Since the OPA model has been since a long time used
for benchmarks in scientific computing, we have some
results of the code performances on various computers.
For example, one can look at the Banc d’essai MIPS, a
paper published (in french!) in AFUU Dossier spécial
Benchmarks n°4 Mars 93.

More recently, the OPA code has been tested on
massively parallel systems, and its performance compared
to the C90’s as described below, using the work of M.
Imbard (LODYC), J. Escobar (IDRIS) and M. Guyon
(CETIIS):
Performances for a simple rectangular grid (jpi= 164 ,
jpj=164, jpk=31)
1) Comparing performances of the code kernel (no I/O) on
one vector processor of CRAY C90 and FUJITSU
VPP700 .

Time (seconds) Mflops Ratio
C90 226.41 497
VPP 212.00 531 1.07

2) Comparing performances of the code kernel (no I/O)
using PVM on different multiprocessors computers

For 16 PEs, the local size of the model on one
processor is 44x44x31 grid-points, which results in a
quite poor vectorization (the maximum vector length is
44).In addition, the PVM version on VPP is two times
faster then on the T3D, which becomes as good as the
SHMEM version.

COMPUTER elapsed
time

(seconds)

Communi-
cation time
(seconds)

Mflops

VPP700
16 PEs PVM

136 20 1813

T3D
64 PEs SHM

603 11 409

C90   1 CPU 609  0 405
T3D

64 PEs PVM
636 44 387

T3D
16 PEs SHM

1885 17 131

T3D
16 PEs PVM

1876 51  131

3) Scalability tests on T3E with SHMEM message
passing

number of
processor

32 64 128 256

Time
(seconds)

386 198 98 50

Speed-Up 1.0 1.95 3.94 7.65
Efficiency 100% 98% 98% 96%
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/lib/cpp -P

include FILE B

FILE A

SEQUENCE A

SEQUENCE B

ifdef  contition

else

endif

/lib/cpp -P
 -Dcondition

FILE C

SEQUENCE A

FILE C

(b)

FILE A

FILE B

FILE B

(a)

Figure IV.6 : C Pre-Processor (cpp) action for (a)  #include command
and (b) #defined command

IV.3  ENVIRONMENT

IV.3-a UNIX Environment of the Model

As mentioned in §IV.1, OPA computer code has been
developed with a well thought-out goal about portability:
it can be performed on any computer which has a
FORTRAN compiler. However, the code is used at
LODYC in a UNIX environment and for the
management, UNIX facilities are employed, namely the C
Pre-Processor (cpp) and the make command. The cpp
improves the legibility and optimizes the number of lines
of the source code. It is used to:

(1) insert some parts in the source code (through
#include) (Fig. IV.6a), especially for the parameter and
common array declarations, and the statement function
definition. All include files are suffixed by .h, so that
they are easily identified, whereas routine with include
orders are suffixed by .F (.f otherwise).

(2) allow sections of the FORTRAN code to be
selectively turned on or off (through #define condition or
#if defined condition and #endif) (Fig. IV.6b).

The cpp is used before entering the compilation phase
and is controlled by cpp variables (conditions) defining
the chosen options. The cpp keys used in the model
correspond to algorithms, formula and specific conditions
chosen for a particular simulation (see §II and §III).

F i l e s
- The computer code consists in some FORTRAN

algorithms, FORTRAN programs or UNIX statements
which are stored in files with different suffixes :

- xxxx.f FORTRAN  source files (ex : prihre.f)
- xxxx.F main files before cpp pre-processor call

(ex : opa.F)
- xxxx.hcode or algorithm included in xxxx.F by

cpp (ex : common.h)

The code contains almost 130 routines insepared files.
They can be found in the LODMODEL/SRC_OPA directory
(see LODMODEL/README_files for a complete description
of file location).

IV.3-b How to Set Up the Model

In general, a user wants to configure the model for a
specific ocean basin by choosing grid sizes and
dimensions, defining its bathymetry and the forcing (i.e.
the surface boundary conditions). This means that this
user does not need to deal with the whole code, but just a
very small part of it. The way to use the code, as we
suggest it, intends to help the user by minimizing the
amount of code he has to explicitly deal with.

The general idea is to start with a reference code
located in a reference directory. This reference code is the
same for all users and will NEVER be modified until a
new release. Each user has its own directory containing
ONLY the routines that he needs to change. During the
compilation, these routines - usually just a few - will
overwrite their counterparts of the reference code in the
user’s working directory on the computer.

In order to use the code, one must first check that it is
suitable for the project. It is therefore strongly suggested
to first discuss of the fit between the project and the OPA
model with the scientists of the OPA development team.
If this has not been done yet, please send an e-mail to
delecluse@lodyc.jussieu.fr or madec@lodyc.jussieu.fr.

The second step is to get the tarfile in order to install
the source files on your system. This tarfile contains the
reference directory as described above. It has to be
installed once and for all in a secured location where no
third party can change it. This directory can be read-only
since it should not be modified because the modified



IV.3 ENVIRONMENT 65

routines and scripts will be in the user’s directory. Once
your choice has been made for this location, you can ask
for the tarfile by sending an e-mail to
levy@lodyc.jussieu.fr or imbard@lodyc.jussieu.fr.

The third step is to extract the reference directory from
the tarfile and install it on your computer. The top
directory is called LODMODEL. All further step should be
documented in README files but the beginning will be:
- fill in and send back to the LODYC the OPA_agreement
located in LODMODEL
- set up your own configuration (for that, start with the
READMElocated in LODMODEL)
- the location and content of all files is described in the
file README_files located in LODMODELdirectory
- please make sure that we can exchange information by
subscribing to the opalist mailing list. In order to do this,
please send an e-mail with no subject to
listserv@lodyc.jussieu.fr  containing the following line:

SUB opalist Your_Name

All further steps are self-documented (please tell us if
you think some information is missing). But in order to
help you find your way through all this, you will find
below some specific details. The standard procedure,
though, is to follow the information from the README
files.

A given simulation of the model is led by several
definitions or choices as constants, domain and grid,
initial data and optional cpp keys:

constants
The  constants  are defined in the parcst .F  file

(corresponding to the FORTRAN  program parcst) and are
communicated to every subroutine by the common
comcst included in the common.h file. The constants are
defined as :

- mathematical constant
 π : rpi = 2 arcsin 1.( )

- astronomical constants
day : rday = 24 × 60 × 60 seconds

sideral year : rsiyea= 365.25×rday× 2×rpi

6.283076
seconds

sideral day : 
rsiday= rday

1+rday / rsiyea( ) 6.283076 seconds

earth angular speed : omega = 2 × rpi

rsiday
seconds−1

- geoid
earth radius : ra = 6371229 meters
gravity : g = 9.80665 meters × second−2

- thermodynamical constants
fusion point : rtt = 273.16 °Kelvin
zero Celsius : rt0 = 273.13 °Kelvin

- conversion factors
degree into radian : rad = rpi / 180.
mm/day into m/s : rcs = rday × 10−3

domain and grid
The spatial dimensions jpiglo, jpjglo (horizontal grid

dimension), and jpk (number of level) as well as the
number of islands for a model configuration must be
supplied in the parameter.h file.

The horizontal grid coordinates are defined or read in
the domhgr.F file (see §III.2)

gphi and glam, 2D arrays allow to use a stretched
orthogonal curvilinear grid.

The vertical levels are defined in the domzgr.F file
(see §III.2).

The land points and bathymetry are computed or read
in the dommba.F file (see §III.2).

cpp keys
Physical and algorithmic options that require a

modification in the common are defined through cpp
keys: these options are chosen before compilation of the
FORTRAN  source code and are described on line in
LODMODEL/DOC/README.cpp file (see also the index at
the end of the reference manual). All the cpp key name
start by key_ in order to avoid problems with the use of
makefiles.

Consistency between the chosen options for a
simulation is checked in the parctl.F routine.

namelist file
Characteristics of a run (the number of time steps, the

value of the horizontal diffusion coefficient ... ) are
defined through namelist statements (see the index). They
are described in the LODMODEL/SRC_OPA/namelist file.
They are taken in account at the execution of the model,
thus changing one of those values does not imply a new
compilation of the code (on the opposite, a change in cpp
option modifies the FORTRAN sources and thus require a
new compilation).

filenames
The input and output data sets are explicitly defined in

the parctl.F routine. Therefore, the user has no choice in
the naming of the files used in the standard version: each
file has a standard name defined in the OPEN FORTRAN
statement associated to a logical unit. If you need to add
new input or output files, the complete list of logical
units and associated standard names can be found in the
header of the parctl.F routine. The used logical units are
printed in the standard output of each run.

IV.3-c How to Run the Model

To summarize, when a user wants to set up its own
model, he or she has to :

- define its grid size (in parameter.h)
- define its grid function (in domhgr.F and domzgr.F)
- define the land points and bathymetry (in  domlec.F)
- select the set of cpp variables (while running the

fait_make_remote  command, see LODMODEL/README)
- check the values of namelist variables (namelist file)
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In order to run a numerical simulation, your own
OPA fileset must be conditioned by the cpp key you have
chosen. It can then be compiled, loaded and executed with
all your input files and the numerical values you have
chosen in the namelist file :

Source
OPA

xxx.f

xxx.F

xxx.h

(FORTRAN)

xxx.f

..............

compile

OPA
model

& load

execution
of a

simulation

OUTPUT
FILES

INPUT
FILES

CPP

To generate the correct makefile and run the code,
please follow carefully the README located in the
LODMODEL directory.

Some test examples can be found in
LODMODEL/DOC/EXAMPLES. Each example is presented
in a separate directory (see the README file), with the
modified OPA routines, the output listing, and the
g r a p h i c  o u t p u t s  b u i l d  u s i n g  t h e
LODMODEL/UTILS/OPADRA graphic package.

IV.3-d How to Modify the Model

Since every authorized user has access to the whole
source code, he or she  may modify or add source files
anytime. In order to be able to take into account your
own needs and developments for further releases, we ask
you to follow our coding rules:
- concerning the FO R T R A N  variables naming
conventions, please see appendix D
- if you develop new parts of the code, please do not
create new cpp keys: it would not be secure if we have to
include developments from other users at the same time
because we might get to conflicting codes. So please
write your code with standard FORTRAN IF, and we will
add a new cpp key when including your developments in
the reference code if necessary
- if you need to declare variables or arrays, please use the
common.h file rather than passing them through
subroutine arguments
- if you want your code to be tested by other users, do not
hesitate to annonce your developments through the
mailing list opalist@lodyc.jussieu.fr
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APPENDIX A : CURVILINEAR S-COORDINATE EQUATIONS

In order to establish the set of Primitive Equation in
curvilinear s-coordinates (i.e. orthogonal curvilinear
coordinates in the horizontal and s-coordinates in the
vertical), we start from the set of equation established in
§ I.3 for the special case k = z  and thus e3 = 1, and we
introduce an arbitrary vertical coordinate s = s(i, j, z). Let
us define a new vertical scale factor by e3 = ∂z ∂s  (which
now depends on (i, j, z) ) and the horizontal slope of s-
surfaces by :

σ 1 = 1

e1

∂z

∂i s

,   and   σ 2 = 1

e2

∂z

∂j
s

(A.1)

The chain rule to establish the model equations in the
curvilinear s-coordinate system is:
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Using (A.2), the divergence of the velocity is
transformed as follows:
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s

− e2

e3

σ 2

∂ (e1v)
∂s







+ ∂w

∂s

∂s

∂z

= 1

e1 e2

∂(e2 u)
∂i s

+ ∂(e1 v)
∂j

s












+ 1

e3

∂w

∂s
−σ 1

∂u

∂s
−σ 2

∂v

∂s






= 1

e1 e2 e3

∂(e2 e3 u)
∂i s

−e2 u
∂e3

∂i s

+ ∂(e1 e3 v)
∂j

s

−e1v
∂e3

∂j
s













+ 1

e3

∂w

∂s
−σ 1

∂u

∂s
−σ 2

∂v

∂s






Noting that 
1

e1

∂e3

∂i s

= 1

e1

∂ 2z

∂i∂s
s

= ∂
∂s

1

e1

∂z

∂i s







= ∂σ 1

∂s
 and

1

e2

∂e3

∂j
s

= ∂σ 2

∂s
, it becomes:

= 1

e1 e2 e3

∂(e2 e3 u)
∂i s

+ ∂(e1 e3 v)
∂j

s













+ 1

e3

∂w

∂s
−u

∂σ 1

∂s
−v

∂σ 2

∂s
−σ 1

∂u

∂s
−σ 2

∂v

∂s






= 1

e1 e2 e3

∂(e2 e3 u)
∂i s

+ ∂(e1 e3 v)
∂j

s













+ 1

e3

∂w

∂s
− ∂(u σ 1)

∂s
− ∂(v σ 2)

∂s






Introducing a "vertical" velocity ω as the velocity normal
to s-surfaces:

ω = w − σ 1 u − σ 2 v (A.3)

the divergence of the velocity is given in curvilinear s-
coordinates by:

∇⋅U = 1

e1 e2 e3

∂(e2 e3 u)
∂i s

+ ∂(e1 e3 v)
∂j

s












+ 1

e3

∂ω
∂s

(A.4)

As a result, the continuity equation (I.1.3) in s-
coordinates becomes:

1

e1 e2 e3

∂(e2 e3 u)
∂i s

+ ∂(e1 e3 v)
∂j

s












+ 1

e3

∂ω
∂s

= 0 (A.5)
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Momentum equation:

As an example let us consider (I.3.10), the first
component of the momentum equation. Its non linear
term can be transformed as follows:

+ζ
z
v− 1

2e1

∂(u2 +v2)
∂i z

−w
∂u

∂z

= 1

e1 e2

∂(e2 v)
∂i z

− ∂(e1 u)
∂j

z













v− 1

2e1

∂(u2 +v2)
∂i z

−w
∂u

∂z

= 1

e1 e2

∂(e2 v)
∂i s

− ∂(e1 u)
∂j

s







− e1

e3

σ 1

∂(e2 v)
∂s

+ e2

e3

σ 2

∂(e1 u)
∂s




v

− 1

2e1

∂(u2 +v2)
∂i s

− e1

e3

σ 1

∂(u2 +v2)
∂s







− w

e3

∂u

∂s

=ζ
s
v− 1

2e1

∂(u2 +v2)
∂i s

− w

e3

∂u

∂s
− σ 1

e3

∂v

∂s
− σ 2

e3

∂u

∂s









v

+ σ 1

2e3

∂(u2 +v2)
∂s

=ζ
s
v− 1

2e1

∂(u2 +v2)
∂i s

− 1

e3

w
∂u

∂s
+σ 1v

∂v

∂s
−σ 2v

∂u

∂s
−σ 1u

∂u

∂s
−σ 1v

∂v

∂s






=ζ
s
v− 1

2e1

∂(u2 +v2)
∂i s

− 1

e3

ω ∂u

∂s
(A.6)

Therefore, the non-linear terms of the momentum
equation have the same form in z- and s-coordinates

The pressure gradient term can be transformed as follows:

− 1

ρoe1

∂p

∂i z

= − 1

ρoe1

∂p

∂i s

− e1

e3

σ 1

∂p

∂s











= − 1

ρo e1

∂p

∂i s

+ σ 1

ρo e3

−g ρ e3( )

= − 1

ρo e1

∂p

∂i s

− g ρ
ρo

σ 1 (A.7)

An additional term appears in (A7) which accounts for
the tilt of model levels.

Tracer equation:

The tracer equation is obtained using the same
calculation as for the continuity equation:

∂T

∂t
= − 1

e1 e2 e3

∂
∂i

e2 e3 Tu( )+ ∂
∂j

e1 e3 Tv( )




+ ∂
∂k

e1 e2 Tω( )

+ DlT + DvT

(A.8)

The expression of the advection term is a straight
consequence of (A.4), the expression of the 3D divergence
in s-coordinates established above.
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APPENDIX B : DIFFUSIVE OPERATORS

B.1 Horizontal/Vertical 2nd Order Tracer
Diffusive Operators

In z-coordinates, the horizontal/vertical second order
tracer diffusive operator is given by:

DT = DlT + DvT

= 1

e1e2

∂
∂i

e2

e1

AlT ∂T

∂i z







z

+ ∂
∂j

e1

e2

AlT ∂T

∂j
z







z













+ ∂
∂z

AvT ∂T

∂z






(B.1)

In s-coordinates, we defined the slopes of s-surfaces,
σ 1  and σ 2  by (A.1), the vertical/horizontal ratio of
diffusive coefficient by ε = AvT AlT . The diffusive
operator is given by:

DT = DlT + DvT = ∇
s
⋅ AlT ℜ ⋅ ∇

s
T( )[ ]

(B.2)

where ℜ =
1 0 −σ 1

0 1 −σ 2

−σ 1 −σ 2 ε + σ 1
2 + σ 2

2













or in expended form:

DT = 1

e1e2e3

e2e3 AlT ∂
∂i

1

e1

∂T

∂i s

− σ 1

e3

∂T

∂s







s







+e1e3 AlT ∂
∂j

1

e2

∂T

∂j
s

− σ 2

e3

∂T

∂s







s

+e1e2 AlT ∂
∂s

− σ 1

e1

∂T

∂i s

− σ 2

e2

∂T

∂j
s





+ ε +σ 1
2 +σ 2

2( ) 1

e3

∂T

∂s









(B.3)

Equation (B.2) (or equivalently (B.3) ) is obtained
from (B.1) without any additional assumption. Indeed, for
the special case k = z  and thus e3 = 1, we introduce an
arbitrary vertical coordinate s = s(i, j, z) as in Appendix A

and use (A.1) and (A.2). Since no cross horizontal
derivate ∂ i ∂ j  appears neither in (B.1) nor in (A.2), there
is a decoupling between (i, z) and ( j, z) plans as well as
(i, s) and ( j, s)  plans. The demonstration can then be
done for the (i, s) → ( j, s)  transformation without loss of
generality:

DT = 1

e1 e2

∂
∂i

e2

e1

AlT ∂T

∂i z







z

+ ∂
∂z

AvT ∂T

∂z






= 1

e1 e2

∂
∂i

e2

e1

AlT ∂T

∂i s

− e1 σ 1

e3

∂T

∂s













s







− e1 σ 1

e3

∂
∂s

e2

e1

AlT ∂T

∂i s

− e1 σ 1

e3

∂T

∂s
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+ 1

e3

∂
∂s

AvT

e3

∂T

∂s











= 1

e1 e2 e3

∂
∂i

e2 e3

e1

AlT ∂T

∂i s







s

− e2

e1

AlT ∂e3

∂i
s

∂T

∂i s







−e3

∂
∂i

e2 σ 1

e3

AlT ∂T

∂s







s

−e1 σ 1

∂
∂s

e2

e1

AlT ∂T

∂i s







−e1 σ 1

∂
∂s

− e2 σ 1

e3

AlT ∂T
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+ ∂
∂s

e1 e2

e3

AvT ∂T

∂s












Noting that 
1

e1

∂e3

∂i s

= ∂σ 1

∂s
, it becomes:

= 1

e1 e2 e3

∂
∂i

e2 e3

e1

AlT ∂T

∂i s







s

−e3

∂
∂i

e2 σ 1

e3

AlT ∂T
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−e1 σ 1

∂
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+e1 σ 1

∂
∂s

e2 σ 1
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+ ∂
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= 1

e1 e2 e3

∂
∂i

e2 e3

e1

AlT ∂T

∂i s







s

− ∂
∂i

e2 σ 1A
lT ∂T
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+ e2 σ 1

e3

AlT ∂T

∂s

∂e3

∂i
s

−e2 AlT ∂σ 1

∂s

∂T

∂i s

−e2 σ 1

∂
∂s

AlT ∂T

∂i s







+ ∂
∂s

e1 e2 σ 1
2

e3

AlT ∂T

∂s







−
∂ e1 e2 σ 1( )

∂s

σ 1

e3

AlT ∂T

∂s







+ ∂
∂s

e1 e2

e3

AvT ∂T

∂s












using the same remark as just above, it becomes:

= 1

e1 e2 e3

∂
∂i

e2 e3

e1

AlT ∂T

∂i s

−e2 σ 1A
lT ∂T

∂s







s







+ e1 e2 σ 1

e3

AlT ∂T

∂s

∂σ 1

∂s
− σ 1

e3

AlT
∂ e1 e2 σ 1( )

∂s

∂T

∂s

−e2 AlT ∂σ 1
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σ 1A
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∂s
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+ ∂
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e1 e2 σ 1
2

e3

AlT ∂T

∂s
+ e1 e2

e3

AvT ∂T

∂s












Since the horizontal scale factor do not depend on the
vertical coordinates, the last term of the first line and the
first term of the last line cancel, while the second line
reduces to a single vertical derivative, so it becomes:

= 1

e1 e2 e3

∂
∂i

e2 e3

e1

AlT ∂T

∂i s

−e2 σ 1 AlT ∂T

∂s







s







+ ∂
∂s

−e2 σ 1 AlT ∂T

∂i s

+ AlT e1 e2

e3
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2( )∂T
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in other words:

DT = 1

e1e2e3

∂ e2e3 •( )
∂i

s

∂ e1e2 •( )
∂s
















⋅ AlT

1 −σ 1

−σ 1 ε +σ 1
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1
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B.2 Isopycnal/Vertical Second Order Tracer
Diffusive Operators

The isopycnal diffusive tensor AI expressed in the
curvilinear coordinate system (i, j, k) , in which the
equations of the ocean circulation model are formulated,
takes the following expression [Redi 1982]:

AI = AlT

1+ a1
2 + a2

2( )
1+ a1

2 −a1a2 −a1

−a1a2 1+ a2
2 −a2

−a1 −a2 ε + a1
2 + a2

2















where (a1 , a2 )  are the isopycnal slopes in (i, j) directions:

a1 = e3

e1

∂ρ
∂i







∂ρ
∂k







−1

a2 = e3

e2

∂ρ
∂j







∂ρ
∂k







−1

In practice, the isopycnal slopes are generally less than
10-2 in the ocean, so AI can be simplified appreciably
(Cox, 1987) :

AI = AlT

1 0 −a1

0 1 −a2

−a1 −a2 ε + a1
2 + a2

2













The resulting isopycnal operator conserves the quantity it
diffuses, and dissipates the square of this quantity. The
demonstration of the first property is trivial. Let us
demonstrate the second one:

T ∇. AI∇T( ) dv
D

∫∫∫ = − ∇T . AI∇T( ) dv
D

∫∫∫
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2

+ ∂T

∂j
− a2

∂T
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2











≥ 0

the property becomes obvious.

Note that the resulting tensor is similar to those obtained
for geopotential diffusion in s-coordinates. The simpli-
fication leads to a decoupling between i, z( )  and j, z( )
plans.

The resulting diffusive operator in z-coordinates has
the following expression :
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B.3 Lateral/Vertical Momentum Diffusive
Operators

* lateral/vertical 2nd order momentum diffusive
operator

Following (I.3.6), the Laplacian of the horizontal
velocity can be expressed in z-coordinates:

∆Uh = ∇ ∇ ⋅ Uh( ) − ∇ × ∇ × Uh( )

=
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Using (I.3.8), the definition of the horizontal divergence,
the third componant of the second vector is obviously
zero and thus :

∆Uh = ∇h χ( ) − ∇h × ζ( ) + 1

e3

∂
∂k

1

e3

∂Uh

∂k







The lateral/vertical second order (Laplacian type)
operator used to diffuse horizontal momentum in z-
coordinates therefore takes the following expression :

DU =Dlm +Dvm

=∇h Alm χ( )−∇h × Alm ζ k( )+ 1

e3

∂
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APPENDIX C : DISCRETE INVARIANTS OF THE EQUATIONS

C.1  Conservation Properties on Ocean Dynamics

First, the boundary condition on the vertical velocity
(no flux through the surface and the bottom) is
established for the discrete set of momentum equations.
Then, it is shown that the non linear terms of the
momentum equation are written such that the potential
enstrophy of a horizontally non divergent flow is
preserved while all the other non-diffusive terms preserve
the kinetic energy: the energy is also preserved in
practice. In addition, an option is also offer for the
vorticity term discretization which provides a total kinetic
energy conserving discretization for that term. Note that
although these properties are established in the curvilinear
s-coordinate system, they still hold in the curvilinear z-
coordinate system.

C.1-a Bottom Boundary Condition on
Vertical Velocity Field

The discrete set of momentum equations used in rigid
lid approximation automatically satisfies the surface and
bottom boundary conditions ( wsurface =wbottom =0 , no flux
through the surface and the bottom: ). Indeed, taking the
discrete horizontal divergence of the vertical sum of the
horizontal momentum equations (Eqs. (II.2.1) and
(II.2.2) ) wheighted by the vertical scale factors, it
becomes:

∂
∂t

χ
k

∑







 ≡ ∂

∂t
wsurface − wbottom( )

≡ 1

e1T e2T e3T

δ i e2u Hu Mu − Mu − 1

Hue2u

δ j ∂ t ψ[ ]





















+δ j e1v Hv Mv − Mv + 1

Hve1v

δ i ∂ t ψ[ ]





















≡ 1

e1T e2T e3T

− δ i δ j ∂ t ψ[ ][ ] + δ j δ i ∂ t ψ[ ][ ]{ } ≡ 0

The surface boundary condition associated with the rigid
lid approximation ( wsurface = 0) is imposed in the
computation of the vertical velocity (II.2.5). Therefore, it
turns out to be:

∂
∂t

wbottom ≡ 0

 As the bottom velocity is initially set to zero, it remains
zero all the time. Symmetrically, if  wbottom = 0  is used in
the computation of the vertical velocity (upward integral
of the horizontal divergence), the same computation leads
to wsurface = 0 as soon as the surface vertical velocity is
initially set to zero.

C.1-b Vorticity Term

Potential vorticity is located at f-points and defined as:
ζ e3 f . The standard discrete formulation of the relative
vorticity term obviously conserves potential vorticity. It
also conserves the potential enstrophy for a horizontally
non-divergent flow (i.e. χ=0) but not the total kinetic
energy. Indeed, using the symmetry or skew symmetry
properties of the operators (Eqs (II.1.10) and (II.1.11)), it
can be shown that:

ζ e3 k ⋅ 1

e3

∇ × ζ k × Uh( ) dv
D∫ ≡ 0 (C.1.1)

where dv = e1 e2 e3 di dj dk  is the volume element. Indeed,
using (II.2.11), the discrete form of the right hand side of
(C.1.1) can be transformed as follow:

ζ e3 f

e1 f e2 f e3 f

δ i+1 2 −
i

ζ e3 f( ) i, j+1 2

e2ue3uu( )[ ]{
i, j,k

∑
− δ j+1 2

j

ζ e3 f( ) i+1 2, j

e1ve3vv( )[ ] } e1 f e2 f e3 f

≡ δ i ζ e3 f[ ] i

ζ e3 f( ) i, j+1 2

e1ue3uu( ){
i, j,k

∑
+ δ j ζ e3 f[ ] j

ζ e3 f( ) i+1 2, j

e2ve3vv( ) }
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≡ 1

2
δ i ζ e3 f( )2[ ] i, j+1 2

e2ue3uu( ){
i, j,k

∑
+ δ j ζ e3 f( )2[ ] i+1 2, j

e1ve3vv( ) }
≡ − 1

2
ζ e3 f( )2

δ i+1 2

i, j+1 2

e2ue3uu( )[ ]{
i, j,k

∑
+ δ j+1 2

i+1 2, j

e1ve3vv( )[ ] }
Since ⋅  and δ operators commute: δ i+1 2 a

i[ ] = δ i a[ ]i+1 2

,
and introducing the horizontal divergence χ, it becomes:

≡ − 1

2
ζ e3 f( )2 i+1 2, j+1 2

e1Te2Te3T χ
i, j,k

∑ ≡ 0

Note that the demonstration is done here for the relative
potential vorticity but it still hold for the planetary
( f e3 ) and the total potential vorticity ( (ζ + f ) e3 ).
Another formulation of the two components of the
vorticity term is optionally offered :

1

e3

∇ × ζ k × Uh( ) ≡
+ 1

e1u

j

ζ e3 f( ) e1ve3vv( )i+1 2

− 1

e2v

i

ζ e3 f( ) e2ue3uu( ) j+1 2

















This formulation does not conserve the enstrophy but
the total kinetic energy. It is also possible to mix the two
formulations in order to conserve enstrophy on the
relative vorticity term and energy on the Coriolis term.

Uh × ζ k × Uh( ) dv
D

∫

≡
j

ζ e3 f( ) e1ve3v v( )i+1 2
e2ue3u u

i, j,k

∑
−

i

ζ e3 f( ) e2ue3u u( ) j+1 2
e1ve3v v 

≡ ζ e3 f( ) e1ve3v v( )i+1 2

e2ue3u u( ) j+1 2{
i, j,k

∑
− e2ue3u u( ) j+1 2

e1ve3v v( )i+1 2 } ≡ 0

C.1-c Gradient of Kinetic Energy / Vertical
Advection

The change of Kinetic Energy (KE) due to the vertical
advection is exactly balanced by the change of KE due to
the horizontal gradient of KE :

Uh ⋅ ∇h 1 2 Uh

2( ) dv
D∫ = − Uh ⋅ w

∂Uh

∂k
dv

D∫

Indeed,

Uh ⋅ ∇h 1 2 Uh
2( ) dv

D∫
≡ 1

2

1

e1u

δ i+1 2 u2
i

+ v2
j[ ] u e1ue2ue3u



i, j,k

∑
+ 1

e2v

δ j+1 2 u2
i

+ v2
j[ ] v e1ve2ve3v





Using (II.1.10) and the continuity of mass (II.2.5), it
becomes :

≡ 1

2
u2

i

+ v2
j( ) δ k e1Te2T w[ ]

i, j,k

∑
Using (II.1.10), and the commutativity of operators ⋅
and δ, it becomes :

≡ − 1

2
δ k+1 2 u2

i

+ v2
j[ ] e1Te2T w

i, j,k

∑

≡ 1

2
δ k+1 2 u2[ ]

i

+ δ k+1 2 v2[ ]
j( ) e1Te2T w

i, j,k

∑
Using (II.1.11) successively in the horizontal and in the
vertical, it becomes :

≡ 1

2
e1Te2T w

i+1 2
2u

k+1 2δ k+1 2 u[ ]{
i, j,k

∑
+ e1Te2T w

j+1 2
2v

k+1 2δ k+1 2 v[ ] }

≡ − 1

bu

e1Te2T w
i+1 2δ k+1 2 u[ ]{ }

k

u e1ue2ue3u



i, j,k

∑
+ 1

bv

e1Te2T w
j+1 2δ k+1 2 v[ ]{ }

k

v e1ve2ve3v





≡ − Uh ⋅ w
∂Uh

∂k
dv

D

∫
The main point here is that the respect of this

property links the choice of the discrete formulation of
vertical advection and of horizontal gradient of KE.
Choosing one imposes the other. For example KE can
also be defined as 1 2(u

i 2

+ v
j 2

) , but this leads to the
following expression for the vertical advection :

1

e3

w
∂Uh

∂k
≡

1

e1ue2ue3u

e1Te2T w δ k+1 2 u
i+1 2[ ]

i+1 2,k

1

e1ve2ve3v

e1Te2T w δ k+1 2 v
j+1 2[ ]

j+1 2,k

















This formulation requires one more horizontal mean,
and thus the use of 9 velocity points instead of 3. This is
the reason why it has not been retained in the model.
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C.1-d Hydrostatic Pressure Gradient Term

A pressure gradient has no contribution to the
evolution of the vorticity as the curl of a gradient is zero.
In z-coordinates, this properties is satisfied locally with
the choice of discretization we have made (property
(II.1.9) ). When the equation of state is linear (i.e. when
a advective-diffusive equation for density can be derived
from those of temperature and salinity) the change of KE
due to the work of pressure forces is balanced by the
change of potential energy due to buoyancy forces.

− 1

ρo

∇ph

z
⋅ Uh dv

D∫ = ∇. ρ U( ) g z dv
D∫

This property is satisfied in both z- and s-coordinates.
Indeed, defining the depth of a T-point, zT  defined as the
sum of the vertical scale factors at w-points starting from
the surface, it can be written as:

− 1

ρo

∇ph

z
⋅ Uh dv

D∫
≡ − 1

ρoe1u

δ i+1 2 ph[ ]− gρ i+1 2 δ i+1 2 zT[ ]( )ue1ue2ue3u



i, j,k

∑
− 1

ρoe2v

δ j+1 2 ph[ ]− gρ j+1 2δ j+1 2 zT[ ]( )ve1ve2ve3v





Using (II.1.10), the continuity equation (II.2.5), and the
hydrostatic equation (II.2.4), it turns out to be:

≡ 1

ρo

e2ue3u ugρ i+1 2 δ i+1 2 zT[ ]+e1ve3v vgρ j+1 2δ j+1 2 zT[ ]{
i, j,k

∑
+ δ i e2ue3uu[ ]+δ j e1ve3vv[ ]( ) ph }

≡ 1

ρo

e2ue3u ugρ i+1 2δ i+1 2 zT[ ]+e1ve3v vgρ j+1 2δ j+1 2 zT[ ]{
i, j,k

∑
−δ k e1we2ww[ ] ph }

≡ 1

ρo

e2ue3u ugρ i+1 2 δ i+1 2 zT[ ]+e1ve3v vgρ j+1 2δ j+1 2 zT[ ]{
i, j,k

∑
+e1we2w wδ k+1 2 ph[ ] }

≡ g

ρo

e2ue3u uρ i+1 2 δ i+1 2 zT[ ]+e1ve3v vρ j+1 2δ j+1 2 zT[ ]{
i, j,k

∑
−e1we2w we3wρ k+1 2 }

noting that by definition of zT, δ k+1 2 zT[ ]≡ −e3w , thus:

≡ g

ρo

e2ue3u uρ i+1 2 δ i+1 2 zT[ ]+e1ve3v vρ j+1 2δ j+1 2 zT[ ]{
i, j,k

∑
+e1we2w wρ k+1 2δ k+1 2 zT[ ]}

Using (II.1.10), it becomes :

≡ − g

ρo

zT δ i e2ue3uu ρ i+1 2[ ] + δ j e1ve3vv ρ j+1 2[ ]{
i, j,k

∑
+δ k e1we2ww ρ k+1 2[ ] }

≡ − ∇. ρ U( ) g z dv
D∫

Note that this property strongly constraints the
discrete expression of both the depth of T-points and of
the term added to the pressure gradient in s-coordinates.

C.1-e Surface Pressure Gradient Term

The surface pressure gradient has no contribution to
the evolution of the vorticity. This property is trivially
satisfied locally as the equation verified by ψ has been
derived from the discrete formulation of the momentum
equation and of the curl. But it has to be noticed that
since the elliptic equation verified by ψ  is solved
numerically by an iterative solver (preconditioned
conjugate gradient or successive over relaxation), the
property is only satisfied at the precision required on the
solver used.

With the rigid-lid approximation, the change of KE
due to the work of surface pressure forces is exactly zero.
This is satisfied in discrete form, at the precision required
on the elliptic solver used to solve this equation. This can
be demonstrated as follows:

− 1

ρo

∇h ps( ) ⋅ Uh dv
D

∫

≡ −Mu − 1

Hue2u

δ j ∂ t ψ[ ]





u e1ue2ue3u



i, j,k

∑
+ −Mv + 1

Hve1v

δ i ∂ t ψ[ ]





v e1ve2ve3v





≡ −Mu − 1

Hue2u

δ j ∂ t ψ[ ]





u e3u

k

∑





e1ue2u





i, j

∑
+ −Mv + 1

Hve1v

δ i ∂ t ψ[ ]





v e3v

k

∑





e1ve2v







using the relation between ψ and the vertically sum of the
velocity, it becomes :

≡ Mu + 1

Hue2u

δ j ∂ t ψ[ ]





e1u δ j ∂ t ψ[ ]

i, j

∑
+ −Mv + 1

Hve1v

δ i ∂ t ψ[ ]





e2v δ i ∂ t ψ[ ] 



applying the adjoint of the δ operator, it is now:
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≡ −∂ t ψ δ j+1 2 e1u Mu[ ]−δ i+1 2 e1v Mv[ ]

i, j

∑
+δ i+1 2

e2v

Hve2v

δ i ∂ t ψ[ ]







+δ j+1 2

e1u

Hue2u

δ j ∂ t ψ[ ]













≡0

The last equality is obtained using (II.2.3), the discrete
barotropic streamfunction time evolution equation. By the

way, this shows that (II.2.3) is the only way do compute
the streamfunction, otherwise the surface pressure forces
will work. Nevertheless, since the elliptic equation
verified by ψ is solved numerically by an iterative solver,
the property is only satisfied at the precision required on
the solver.

C.2  Conservation Properties on Ocean Thermodynamics

The numerical schemes are written such that the heat
and salt contents are conserved by the internal dynamics
(equations in flux form, second order centered finite
differences). As a form flux is used to compute the
temperature and salinity, the quadratic form of these
quantities (i.e. their variance) is globally conserved, too.
There is generally no strict conservation of mass, as the
equation of state is non linear with respect to T and S. In
practice, the mass is conserved with a very good accuracy.

C.2-a Tracer Conservation by Advective Term

∇. T U( ) dv
D∫

≡ 1

e1Te2Te3T

δ i e2ue3u T
i+1 2

u[ ] + δ j e1ve3v T
j+1 2

v[ ]( )

i, j,k

∑
+ 1

e3T

δ k T
k+1 2

w[ ] 



e1Te2Te3T

≡ δ i e2ue3u T
i+1 2

u[ ] + δ j e1ve3v T
j+1 2

v[ ]{
i, j,k

∑
+δ k e1Te2T T

k+1 2
w[ ] }

≡ 0

C.2-b Variance of Tracer Conservation by
Advective Term

T ∇. T U( ) dv
D

∫
≡ T δ i e2ue3u T

i+1 2
u[ ] + δ j e1ve3v T

j+1 2
v[ ]{

i, j,k

∑
+δ k e1Te2T T

k+1 2
w[ ] }

≡ − e2ue3u T
i+1 2

u δ i+1 2 T[ ] − e1ve3v T
j+1 2

v δ j+1 2 T[ ]{
i, j,k

∑
−e1Te2T T

k+1 2
w δ k+1 2 T[ ] }

≡ − 1

2
e2ue3u u δ i+1 2 T 2[ ] + e1ve3v v δ j+1 2 T 2[ ]{

i, j,k

∑
+e1Te2T w δ k+1 2 T 2[ ] }

≡ 1

2
T 2 δ i e2ue3uu[ ] + δ j e1ve3vv[ ] + δ k e1Te2T w[ ]{ }

i, j,k

∑
≡ 0

C.3  Conservation Properties on Lateral Momentum Physics

The discrete formulation of the horizontal diffusion of
momentum ensures the conservation of potential vorticity
and horizontal divergence and the dissipation of the square
of these quantities (i.e. enstrophy and the variance of the
horizontal divergence) as well as the dissipation of the
horizontal kinetic energy. In particular, when the eddy

coefficients are horizontally uniform, it ensures a
complete separation of vorticity and horizontal divergence
fields, so that diffusion (dissipation) of vorticity
(enstrophy) does not generate horizontal divergence
(variance of the horizontal divergence) and vice versa.
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These properties of the horizontal diffusive operator
are a direct consequence of properties (II.1.8) and (II.1.9).
When the vertical curl of the horizontal diffusion of
momentum (discrete sense) is taken, the term associated
to the horizontal gradient of the divergence is zero locally.

C.3-a Conservation of Potential Vorticity

The lateral momentum diffusion term conserves the
potential vorticity :

1

e3

k ⋅ ∇ × ∇h Alm χ( ) − ∇h × Alm ζ k( )[ ] dv
D

∫
= − 1

e3

k ⋅ ∇ × ∇h × Alm ζ k( )[ ] dv
D

∫

≡ δ i+1 2

e2v

e1ve3v

δ i Af
lme3 f ζ[ ]











i, j

∑
+δ j+1 2

e1u

e2ue3u

δ j Af
lme3 f ζ[ ]













Using (II.1.10), it follows:

≡ − e2v

e1ve3v

δ i Af
lme3 f ζ[ ] δ i 1[ ]


i, j,k

∑
+ e1u

e2ue3u

δ j Af
lme3 f ζ[ ] δ j 1[ ] 




≡ 0

C.3-b Dissipation of Horizontal Kinetic
Energy

The lateral momentum diffusion term dissipates the
horizontal kinetic energy:

Uh ⋅ ∇h Alm χ( )−∇h × Alm ζ k( )[ ]dv
D∫

≡ 1

e1u

δ i+1 2 AT
lmχ[ ]− 1

e2ue3u

δ j Af
lme3 f ζ[ ]








e1ue2ue3u u
i, j,k

∑
+ 1

e2u

δ j+1 2 AT
lmχ[ ]+ 1

e1ve3v

δ i Af
lme3 f ζ[ ]








e1ve2ue3v v

≡ e2ue3u u δ i+1 2 AT
lmχ[ ] − e1u u δ j Af

lme3 f ζ[ ]{ }
i, j,k

∑
+ e1ve3v v δ j+1 2 AT

lmχ[ ] + e2v v δ i Af
lme3 f ζ[ ]{ }

≡ − δ i e2ue3u u[ ] + δ j e1ve3v v[ ]( ) AT
lmχ

i, j,k

∑
− δ i+1 2 e2v v[ ] − δ j+1 2 e1u u[ ]( ) Af

lme3 f ζ

≡ − AT
lm χ 2 e1Te2Te3T − Af

lm ζ 2 e1 f e2 f e3 f

i, j,k

∑ ≤ 0

C.3-c Dissipation of Enstrophy

The lateral momentum diffusion term dissipates the
enstrophy when the eddy coefficients are horizontally
uniform:

ζ k ⋅ ∇ × ∇h Alm χ( ) − ∇h × Alm ζ k( )[ ] dv
D

∫
= Alm ζk ⋅ ∇ × ∇h × ζ k( )[ ] dv

D

∫

≡ Alm ζ e3 f δ i+1 2

e2v

e1ve3v

δ i e3 f ζ[ ]











i, j,k

∑
+δ j+1 2

e1u

e2ue3u

δ j e3 f ζ[ ]













Using (II.1.10), it becomes :

≡ − Alm 1

e1ve3v

δ i e3 f ζ[ ]





2

e1ve2ve3v





i, j,k

∑
+ 1

e2ue3u

δ j e3 f ζ[ ]





2

e1ue2ue3u






≤ 0

C.3-d Conservation of Horizontal
Divergence

When the horizontal divergence of the horizontal
diffusion of momentum (discrete sense) is taken, the term
associated to the vertical curl of the vorticity is zero
locally, due to (II.1.8). The resulting term conserves the
χ and dissipates χ 2 when the eddy coefficients are
horizontally uniform.

∇h ⋅ ∇h Alm χ( )−∇h × Alm ζ k( )[ ]dv
D

∫ = ∇h ⋅∇h Alm χ( ) dv
D

∫

≡ δ i Au
lm e2ue3u

e1u

δ i+1 2 χ[ ]







+δ j Av

lm e1ve3v

e2v

δ j+1 2 χ[ ]















i, j,k

∑
Using (II.1.10), it follows:

≡ − e2ue3u

e1u

Au
lmδ i+1 2 χ[ ] δ i+1 2 1[ ]


i, j,k

∑
+ e1ve3v

e2v

Av
lmδ j+1 2 χ[ ] δ j+1 2 1[ ] 




≡ 0
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C.3-e Dissipation of Horizontal Divergence
Variance

χ ∇h ⋅ ∇h Alm χ( )−∇h × Alm ζ k( )[ ]dv
D

∫ = Alm χ ∇h ⋅∇h χ( )dv
D

∫

≡ Alm 1

e1Te2Te3T

χ δ i

e2ue3u

e1u

δ i+1 2 χ[ ]











i, j,k

∑
+δ j

e1ve3v

e2v

δ j+1 2 χ[ ]













e1Te2Te3T

Using (II.1.10), it turns out to be:

≡ −Alm 1

e1u

δ i+1 2 χ[ ]





2

e1ue2ue3u





i, j,k

∑
+ 1

e2v

δ j+1 2 χ[ ]





2

e1ve2ve3v






≤ 0

C.4  Conservation Properties on Vertical Momentum Physics

As for the lateral momentum physics, the continuous
form of the vertical diffusion of momentum satisfies the
several integral constraints. The first two are associated to
the conservation of momentum and the dissipation of
horizontal kinetic energy:

  

1

e3

∂
∂k

Avm

e3

∂Uh

∂k







dv
D

∫ =
r
0

and

Uh ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k







dv
D

∫ ≤0

The first property is obvious. The second results from:

Uh ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k







dv
D

∫

≡ uδ k

Au
vm

e3uw

δ k+1 2 u[ ]







e1ue2u +vδ k

Av
vm

e3vw

δ k+1 2 v[ ]







e1ve2v







i, j,k

∑
as the horizontal scale factor do not depend on k, it
follows:

≡ − Au
vm

e3uw

δ k+1 2 u[ ]( )2
e1ue2u + Av

vm

e3vw

δ k+1 2 v[ ]( )2
e1ve2v







i, j,k

∑ ≤0

The vorticity is also conserved. Indeed:

1

e3

k ⋅ ∇ × 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D

∫

≡ 1

e3 f

1

e1 f e2 f

δ i+1 2

e2v

e3v

δ k

1

e3vw

δ k+1 2 v[ ]



















i, j,k

∑
−δ j+1 2

e1u

e3u

δ k

1

e3uw

δ k+1 2 u[ ]




















e1 f e2 f e3 f ≡0

If the vertical diffusion coefficient is uniform over the
whole domain, the enstrophy is dissipated, i.e.

ζ k ⋅ ∇ × 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D

∫ = 0

This property is only satisfied in z-coordinates:

ζ k ⋅ ∇ × 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D

∫

≡ ζ e3 f δ i+1 2

e2v

e3v

δ k

Av
vm

e3vw

δ k+1 2 v[ ]



















i, j,k

∑
−δ j+1 2

e1u

e3u

δ k

Au
vm

e3uw

δ k+1 2 u[ ]





















≡ ζ e3 f

1

e3v

δ k

Av
vm

e3vw

δ k+1 2 δ i+1 2 e2vv[ ][ ]











i, j,k

∑
− 1

e3u

δ k

Au
vm

e3uw

δ k+1 2 δ j+1 2 e1uu[ ][ ]













Using the fact that the vertical diffusive coefficients are
uniform and that in z-coordinates, the vertical scale factors
do not depends on i and j so that: e3 f = e3u = e3v = e3T  and
e3w = e3uw = e3vw , it follows:
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≡ Avm ζ δ k

1

e3w

δ k+1 2 δ i+1 2 e2vv[ ] − δ j+1 2 e1uu[ ][ ]









i, j,k

∑

≡ − Avm 1

e3w

δ k+1 2 ζ[ ]( )2

i, j,k

∑ e1 f e2 f ≤ 0

Similarly, the horizontal divergence is obviously
conserved:

∇ ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D

∫ = 0

and the square of the horizontal divergence decreases (i.e.
the horizontal divergence is dissipated) if vertical diffusion
coefficient is uniform over the whole domain:

χ ∇ ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D

∫ = 0

This property is only satisfied in z-coordinates:

χ ∇ ⋅ 1

e3

∂
∂k

Avm

e3

∂Uh

∂k













dv
D

∫

≡ χ
e1Te2T

δ i+1 2

e2u

e3u

δ k

Au
vm

e3uw

δ k+1 2 u[ ]



















i, j,k

∑
+ δ j+1 2

e1v

e3v

δ k

Av
vm

e3vw

δ k+1 2 v[ ]




















e1Te2Te3T

≡ Avm χ δ i+1 2 δ k

1

e3uw

δ k+1 2 e2uu[ ]



















i, j,k

∑
+δ j+1 2 δ k

1

e3vw

δ k+1 2 e1vv[ ]





















≡ − Avm
δ k+1 2 χ[ ]

e3w

δ k+1 2 δ i+1 2 e2uu[ ]+ δ j+1 2 e1vv[ ][ ]





i, j,k

∑

≡ − Avm 1

e3w

δ k+1 2 χ[ ] δ k+1 2 e1Te2T χ[ ]
i, j,k

∑

≡ − Avm e1Te2T

e3w

δ k+1 2 χ[ ]( )2

i, j,k

∑ ≡ 0

C.5  Conservation Properties on Tracer Physics

The numerical schemes used for tracer subgridscale
physics are written such that the heat and salt contents are
conserved (equations in flux form, second order centered
finite differences). As a form flux is used to compute the
temperature and salinity, the quadratic form of these
quantities (i.e. their variance) globally tends to diminish.
As for the advection term, there is generally no strict
conservation of mass even if, in practice, the mass is
conserved with a very good accuracy.

C.5-a Conservation of Tracers

constraint of conservation of tracers:

T ∇. A ∇T( ) dv
D

∫

≡ δ i Au
lT e2ue3u

e1u

δ i+1 2 T[ ]







 + δ j Av

lT e1ve3v

e2v

δ j+1 2 T[ ]











i, j,k

∑
+δ k Aw

vT e1Te2T

e3T

δ k+1 2 T[ ]













≡ 0

C.5-b Dissipation of Tracer Variance

constraint of dissipation of tracer variance:

T ∇. A ∇T( ) dv
D

∫

≡ T δ i Au
lT e2ue3u

e1u

δ i+1 2 T[ ]







+δ j Av

lT e1ve3v

e2v

δ j+1 2 T[ ]











i, j,k

∑
+δ k Aw

vT e1Te2T

e3T

δ k+1 2 T[ ]













≡ − Au
lT 1

e1u

δ i+1 2 T[ ]





2

e1ue2ue3u





i, j,k

∑
+ Av

lT 1

e2v

δ j+1 2 T[ ]





2

e1ve2ve3v

+ Aw
vT 1

e3w

δ k+1 2 T[ ]





2

e1we2we3w






≤ 0
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APPENDIX D CODING RULES

The "model life" is about ten years and its software,
composed by about one hundred programs, is used by
many people who are scientists or students and do not
necessary know very well all computer aspects.
Moreover, a well thought-out programme is easy to read
and understand, less difficult to modify, produces fewer
bugs and is easier to maintain. Therefore, it is essential
that the model development follows some rules :

- well planned and designed
- well written
- well documented (both on- and off-line)
- maintainable
- easily portable
- flexible.

To satisfy part of these aims, OPA is written with a
coding standard which is close to the ECMWF rule,
named DOCTOR [Gibson,1986]. These rules present
some advantages like :

- to provide a well presented program
- to enable the extraction of several levels of on-line

documentation
- to use rules for variable names which allow

recognition of their type (integer, real, parameter,
common variables, etc. ) so that debugging is facilitated.

The program structure

Each program begins with a set of headline comments
containing :

- the program title
- the purpose of the routine
- the method and algorithms used
- the detail of input and output interfaces
- the external routines and functions used (if exist)
- references (if exist)
- the author name (s), the date of creation and of

updates.
- Each program is splitted into several well separated

sections and sub-sections with a underlined title and
specific labelled statements.

- A program has not more than 200 to 300 lines.

Coding conventions

- Use of the universal language FORTRAN 5 ANSI 77,
with non standard extensions, NAMELIST and FORTRAN
90 (matrix resolution algorithm), and some well-identified
particular statements or functions for weak and massive
parallelism, and vectorization

- A comment line begins with a uppercase character C
at the first column. A space line must have a C. For the
on-line documentation, comments are classified into three
levels :

Overview, triggered by CCC in columns 1 to 3. Only
the title and the purpose of the program are identified like
that. This overview documentation can be extracted by the
UNIX function : grep -e '^CCC' *

External, triggered by CC in columns 1 to 2, and
which correspond to headlines of each programme,
extracted by : grep -e '^CC' *

Internal which are all the comments, extracted by :
grep -e '^C' *

- Statements GO TO, EQUIVALENCE are forbidden.
- A section is numbered with labels which are in

agreement with the paragraph label and increase from the
begin to the end of routine. Labels of a hundred ( 200,
201.. 220..) are reserved to a unique section. The
FORTRAN 90 extension syntax DO/ENDDO is used
except for multitasked do-loop. In this case labels 1000,
2000, ... are used. The FORMAT statement are labelled
with numbers in the range 9000 to 9999.

- A continuation line begins with the character $ in
column 6.

- All statements begin in column 7 with the
following gaps :

2 spaces toward the right in a DO loop.
4 spaces toward the right in IF, ELSEIF, ELSE and

ENDIF statements, with only 2 spaces for ELSE and
ELSEIF lines. All IF statement must be followed by a
ELSE statement.

Some spaces in the continuation line for alignment.
- Use of different labels for each DO loop statement.
- STOP must be well documented with the name of

the subroutine or a number.
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Naming Conventions.

The purpose of the naming conventions is to use
prefix letters to classify model variables. These
conventions allow to know easily the variable type and to
identify them rapidly:

type

status

integer real logical character double
precision

complex

global
or

common

m n
but not
nam

a b e f g h
o q to  x
but not

s f

l
but not

lp ld ll

c
but not

cp cd cl
com cim

d
but not

dp dd dl

y
but not

yp yd yl

dummy
argument

k
but not

kf

p
but not
pp pf

ld cd dd yd

local
variable

i z l l c l cd y l

loop
control

j
but not

jp
parameter jp pp l p cp dp y p
statement
function

kf s f
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INDEX:   CPP VARIABLES

computer parameters
default option  59
key_monotasking  58; 59
key_mpp  58; 59; 60; 61

diagnostics
output

default option  53
key_diainstant  53

trends
key_diatrddyn  54
key_diatrdtra  54

initialization
key_saldta  52
key_temdta  52

numerical schemes
barotropic solver

key_islands  34; 36
barotropic streamfunction solver

default option  39
key_islands  41
key_nobsf  39

time differencing on vertical diffusion terms
default option  27; 46; 49
key_zdfexplicit  27; 46; 49

vorticity term
default option  25; 28
key_vorcombined  25; 28
key_vorenergy  25; 28

physics
lateral diffusion on dynamics

coefficients
default option  42
key_dynhdfcoef~d  42

operators
default option  45
key_dynhdfbilap  45
key_dynhdfgeop  45; 46
key_dynhdfiso  45

lateral diffusion on tracers
coefficients

default option  42
key_trahdfcoef~d  42; 43

operators
default option  44
key_trahdfbilap  44; 45
key_trahdfeiv  43; 44; 45
key_trahdfgeop  44; 45
key_trahdfiso  44; 45

vertical diffusivity coefficients
key_zdfconstant  46
key_zdfrichardson  46
key_zdftke  47; 49

convection
key_convevd  49
key_convnpc  48
key_zdftke  49

Newtonian damping
key_tradmp  52

surface fluxes
coupled ocean

key_coupled  38
forced ocean

default option  38
key_flx  38
key_tau  38

penetrative solar radiation
default option  38
key_flxqsr  38

vertical coordinate
default option  24; 25; 26; 34
key_s_coord  24; 25; 26; 34; 35; 44; 45; 46
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INDEX:   NAMELIST PARAMETERS

aeiv  43; 45

ahm0, aht0  43

ahmb0, ahtb0  43

atfp  27

avevd  49

avm0, avt0 46; 47; 48

avmri, alp, nric  47

bfri1  50

bfric2, bfeb2  50

ebb, emin0  47

eps  40; 41

epsisl, nmisl  41

nacc  52

navmt  27

nbotfr  50

nbsfs  39; 40

neos  36; 37

ngrid  34

nizoom, njzoom  53

nmax  40; 41

nmldmp  52

nmsh  34

nmxl  47

npdl  47

nshlat  23

ntopo  36

ntrd  54

ralpha, rbeta, rau0  37

rcp  37

rdt, rdttra  52

sor  40

xsi1, xsi2, rabs  38


